Liisa Arike
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liisa Arike.
Cell Host & Microbe | 2015
Malin E. V. Johansson; Hedvig E. Jakobsson; Jessica Holmén-Larsson; André Schütte; Anna Ermund; Ana M. Rodríguez-Piñeiro; Liisa Arike; Catharina Wising; Frida Svensson; Fredrik Bäckhed; Gunnar C. Hansson
The intestinal mucus layer provides a barrier limiting bacterial contact with the underlying epithelium. Mucus structure is shaped by intestinal location and the microbiota. To understand how commensals modulate gut mucus, we examined mucus properties under germ-free (GF) conditions and during microbial colonization. Although the colon mucus organization of GF mice was similar to that of conventionally raised (Convr) mice, the GF inner mucus layer was penetrable to bacteria-sized beads. During colonization, in which GF mice were gavaged with Convr microbiota, the small intestine mucus required 5 weeks to be normally detached and colonic inner mucus 6 weeks to become impenetrable. The composition of the small intestinal microbiota during colonization was similar to Convr donors until 3 weeks, when Bacteroides increased, Firmicutes decreased, and segmented filamentous bacteria became undetectable. These findings highlight the dynamics of mucus layer development and indicate that studies of mature microbe-mucus interactions should be conducted weeks after colonization.
Journal of Molecular Biology | 2016
Liisa Arike; Gunnar C. Hansson
All mucins are highly O-glycosylated by variable glycans depending on species, histoblood group and organ. This makes the intestinal main mucin MUC2 non-degradable by the host digestive system but well by both commensal and pathogenic bacteria. The MUC2 glycans are important for selection of the commensal bacteria and act as a nutritional source for the bacteria; this also helps the host to recover some of the energy spent on constantly renewing the protective mucus layer. Glycosylation is the most diverse and common posttranslational modification of cell surfaces and secreted proteins. N-Glycosylation is most well studied and predictable, whereas O-glycosylation is more diverse and less well understood. O-Glycosylation is also often called mucin-type glycosylation as it is typical for mucins that often have more than 80% of the mass as O-glycans. This review will discuss the mucin-type O-glycosylation and especially the O-glycosylation of human and mice intestinal mucin MUC2 in relation to bacteria and disease.
Glycobiology | 2017
Liisa Arike; Jessica Holmén-Larsson; Gunnar C. Hansson
Intestinal cells are covered by mucus. In the small intestine, a single unattached mucus is present whereas the colon has both an inner attached mucus layer and an outer loose mucus. The attached mucus of the colon is impenetrable to bacteria while the loose mucus acts as a habitat for commensal bacteria. In germ-free (GF) mice, small intestinal mucus is attached to the epithelium and the inner colon mucus is penetrable. O-glycosylation plays an important role in the host-microbiota interactions as the commensal bacteria use glycans as nutrient sources and attachment sites. While mucus protein composition is relatively homogenous along the intestine, its main component the Muc2 mucin shows regiospecific O-glycan patterns. We have now analyzed the glycosyltransferase relative concentrations in the epithelial cells along the intestine in GF and conventionally raised mice and compared this with the O-glycans formed. As Muc2 is the main O-glycosylated product in mucus, we made the simplified assumption that most of the glycosyltransferases found in the epithelial cells are involved in Muc2 O-glycan biosynthesis. The O-glycosyltransferase abundances along the intestine correlated well with the Muc2 O-glycan patterns. Some of the glycosyltransferases involved in the O-glycan elongation were decreased in GF mice, something that is in concordance with the observed shorter Muc2 O-glycans.
PLOS ONE | 2015
Nancy A. Erickson; Elisabeth E. L. Nyström; Lars Mundhenk; Liisa Arike; Rainer Glauben; Markus M. Heimesaat; André Fischer; Stefan Bereswill; George M. H. Birchenough; Achim D. Gruber; Malin E. V. Johansson
The secreted, goblet cell-derived protein Clca1 (chloride channel regulator, calcium-activated-1) has been linked to diseases with mucus overproduction, including asthma and cystic fibrosis. In the intestine Clca1 is found in the mucus with an abundance and expression pattern similar to Muc2, the major structural mucus component. We hypothesized that Clca1 is required for the synthesis, structure or barrier function of intestinal mucus and therefore compared wild type and Clca1-deficient mice under naive and at various time points of DSS (dextran sodium sulfate)-challenged conditions. The mucus phenotype in Clca1-deficient compared to wild type mice was systematically characterized by assessment of the mucus protein composition using proteomics, immunofluorescence and expression analysis of selected mucin genes on mRNA level. Mucus barrier integrity was assessed in-vivo by analysis of bacterial penetration into the mucus and translocation into sentinel organs combined analysis of the fecal microbiota and ex-vivo by assessment of mucus penetrability using beads. All of these assays revealed no relevant differences between wild type and Clca1-deficient mice under steady state or DSS-challenged conditions in mouse colon. Clca1 is not required for mucus synthesis, structure and barrier function in the murine colon.
Journal of Clinical Oncology | 2017
Karolina S. Jabbar; Liisa Arike; Caroline S. Verbeke; Riadh Sadik; Gunnar C. Hansson
Purpose Pancreatic cystic lesions are common incidental findings on imaging, but up to half may be forerunners of pancreatic cancer. Therefore, accurate differential diagnosis is crucial for correct patient management. Unfortunately, currently available diagnostic methods cannot robustly identify premalignant and malignant pancreatic cystic lesions. Methods Cyst fluid samples obtained by routine endoscopic ultrasound-guided aspiration were used for the analyses. In a cohort of 24 patients, eight biomarker candidates for malignant potential and high-grade dysplasia/cancer were identified by an explorative proteomic approach. Subsequently, a quantitative analysis, using 30 heavy-labeled peptides from the biomarkers and parallel reaction monitoring mass spectrometry, was devised, tested in a training cohort of 80, and prospectively evaluated in a validation cohort of 68 patients. End points were surgical pathology diagnosis/clinical follow-up. Diagnostic assessments were blinded to mass spectrometry results. Results The optimal set of markers for detecting malignant potential was a panel of peptides from mucin-5AC and mucin-2, which could discriminate premalignant/malignant lesions from benign with an accuracy of 97% (95% CI, 89% to 99%) in the validation cohort. This result compared favorably with the accuracy of standard analyses: cyst fluid carcinoembryonic antigen (61%; 95% CI, 46% to 74%; P < .001) and cytology (84%; 95% CI, 71% to 92%; P = .02). A combination of proteins mucin-5AC and prostate stem-cell antigen could identify high-grade dysplasia/cancer with an accuracy of 96% (95% CI, 90% to 99%), and detected 95% of malignant/severely dysplastic lesions, compared with 35% and 50% for carcinoembryonic antigen and cytology ( P < .001 and P = .003, respectively). Conclusion Targeted mass spectrometry analysis of just three cyst fluid biomarkers provides highly accurate identification and assessment of cystic precursors to pancreatic adenocarcinoma. Additional studies should determine whether the method can facilitate timely cancer diagnosis, successful intervention, and prevention.
JCI insight | 2018
Joan Fernandez-Blanco; Dalia Fakih; Liisa Arike; Ana M. Rodríguez-Piñeiro; Beatriz Martínez-Abad; Elin Skansebo; Sonya Jackson; James Root; Dave Singh; Christopher McCrae; Christopher M. Evans; Annika Åstrand; Anna Ermund; Gunnar C. Hansson
The respiratory tract is normally kept essentially free of bacteria by cilia-mediated mucus transport, but in chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), bacteria and mucus accumulates instead. To address the mechanisms behind the mucus accumulation, the proteome of bronchoalveolar lavages from COPD patients and mucus collected in an elastase-induced mouse model of COPD was analyzed, revealing similarities with each other and with the protein content in colonic mucus. Moreover, stratified laminated sheets of mucus were observed in airways from patients with CF and COPD and in elastase-exposed mice. On the other hand, the mucus accumulation in the elastase model was reduced in Muc5b-KO mice. While mucus plugs were removed from airways by washing with hypertonic saline in the elastase model, mucus remained adherent to epithelial cells. Bacteria were trapped on this mucus, whereas, in non-elastase-treated mice, bacteria were found on the epithelial cells. We propose that the adherence of mucus to epithelial cells observed in CF, COPD, and the elastase-induced mouse model of COPD separates bacteria from the surface cells and, thus, protects the respiratory epithelium.
EBioMedicine | 2018
Elisabeth E. L. Nyström; George M. H. Birchenough; Sjoerd van der Post; Liisa Arike; Achim D. Gruber; Gunnar C. Hansson; Malin E. V. Johansson
Many epithelial surfaces of the body are covered with protective mucus, and disrupted mucus homeostasis is coupled to diseases such as ulcerative colitis, helminth infection, cystic fibrosis, and chronic obstructive lung disease. However, little is known how a balanced mucus system is maintained. By investigating the involvement of proteases in colonic mucus dynamics we identified metalloprotease activity to be a key contributor to mucus expansion. The effect was mediated by calcium-activated chloride channel regulator 1 (CLCA1) as application of recombinant CLCA1 on intestinal mucus in freshly dissected tissue resulted in increased mucus thickness independently of ion and mucus secretion, but dependent on its metallohydrolase activity. Further, CLCA1 modulated mucus dynamics in both human and mouse, and knock-out of CLCA1 in mice was compensated for by cysteine proteases. Our results suggest that CLCA1 is involved in intestinal mucus homeostasis by facilitating processing and removal of mucus to prevent stagnation. In light of our findings, we suggest future studies to investigate if upregulation of CLCA1 in diseases associated with mucus accumulation could facilitate removal of mucus in an attempt to maintain homeostasis.
bioRxiv | 2017
Joan Fernandez-Blanco; Liisa Arike; Anna Ermund; Dalia Fakih; Ana Rodriguez; Beatriz Abad; Elin Skansebo; Sonya Jackson; James Root; Dave Singh; Christopher McCrae; Christopher M. Evans; Annika Åstrand; Gunnar C. Hansson
The respiratory tract is normally kept essentially free of bacteria by cilia-mediated mucus transport, but in chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) mucus accumulates due to goblet cell hyperplasia and mucin overexpression. To address mechanisms behind the mucus accumulation, the elastase-induced mouse model was utilized. The proteomes of bronchoalveolar lavage fluid from elastase-induced mice and COPD patients showed similarities to each other and to colonic mucus. Lung mucus showed a striated, laminated appearance in the elastase-induced mice, COPD and CF, resembling that observed for colonic mucus. Less mucus obstruction was observed in mice lacking the Muc5b mucin. The accumulated mucus plugs of the elastase-induced mice were possible to wash out, but a mucus layer covering the epithelium remained attached to the surface goblet cells also after hypertonic saline washings as widely used in CF therapy. The results suggest that the lung can convert its mucus system into an attached mucus layer that protects the epithelium, similarly to the colon.
Cell Host & Microbe | 2018
Bjoern O. Schroeder; George M. H. Birchenough; Marcus Ståhlman; Liisa Arike; Malin E. V. Johansson; Gunnar C. Hansson; Fredrik Bäckhed
Gastroenterology | 2017
Elisabeth E. L. Nyström; Beatriz Martínez-Abad; Liisa Arike; George M. H. Birchenough; Malin E. V. Johansson