Lijian Leng
Hunan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lijian Leng.
Journal of Hazardous Materials | 2015
Hou Wang; Xingzhong Yuan; Yan Wu; Guangming Zeng; Xiaohong Chen; Lijian Leng; Zhibin Wu; Longbo Jiang; Hui Li
Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH2-MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH2-MIL-125(Ti) were well characterized by XRD, SEM, XPS, N2 adsorption-desorption measurements, thermogravimetric analysis and UV-vis diffuse reflectance spectra (DRS). It is revealed that the NH2-MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH2-MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti(3+)-Ti(4+) intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater.
Bioresource Technology | 2011
Huajun Huang; Xingzhong Yuan; Guangming Zeng; Huina Zhu; Hui Li; Zhifeng Liu; Hongwei Jiang; Lijian Leng; Wenkai Bi
Liquefaction residues (LR) are the main by-products of sewage sludge (SS) liquefaction. This study quantitatively evaluates the potential ecological risk and pollution degrees of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in LR versus SS. The leaching rates (R1) of heavy metals in LR were much lower than those in SS, revealing that the mobility/leachability of heavy metals was well suppressed after liquefaction. Geo-accumulation index (Igeo) indicated that the liquefaction process significantly weakened the contamination degrees of heavy metals. Potential ecological risk index (RI) demonstrated that overall risks caused by heavy metals were obviously lowered from 1093.56 (very high risk) in SS to 4.72 and 1.51 (low risk) in LR1 and LR2, respectively. According to the risk assessment code (RAC), each tested heavy metal had no or low risk to the environments after liquefaction. In a word, the pollution hazards of heavy metals in LR were markedly mitigated.
Chemosphere | 2015
Xingzhong Yuan; Lijian Leng; Huajun Huang; Xiaohong Chen; Hou Wang; Zhihua Xiao; Yunbo Zhai; Hongmei Chen; Guangming Zeng
Liquefaction bio-oil (LBO) produced with ethanol (or acetone) as the solvent and pyrolysis bio-oil (PBO) produced at 550°C (or 850°C) from sewage sludge (SS) were produced, and were characterized and evaluated in terms of their heavy metal (HM) composition. The total concentration, speciation and leaching characteristic of HMs (Cu, Cr, Pb, Zn, Cd, and Ni) in both LBO and PBO were investigated. The total concentration and exchangeable fraction of Zn and Ni in bio-oils were at surprisingly high levels. Quantitative risk assessment of HM in bio-oils was performed by the method of risk assessment code (RAC), potential ecological risk index (PERI) and geo-accumulation index (GAI). Ni in bio-oil produced by pyrolysis at 850°C (PBO850) and Zn in bio-oil by liquefaction at 360°C with ethanol as solvent (LBO-360E) were evaluated to possess very high risk to the environment according to RAC. Additionally, Cd in PBO850 and LBO-360E were evaluated by PERI to have very high risk and high risk, respectively, while Cd in all bio-oils was assessed moderately contaminated according to GAI.
RSC Advances | 2015
Hou Wang; Xingzhong Yuan; Yan Wu; Xiaohong Chen; Lijian Leng; Guangming Zeng
A series of metal sulfides have been used to sensitize titanium metal–organic frameworks to form heterostructures through a facile photodeposition strategy. Graphene-like MoS2 sheets, Ag2S, CdS and CuS quantum dots were uniformly deposited onto MIL-125(Ti) under ultraviolet light conditions. The as-obtained heterostructure hybrids exhibited interesting photocatalytic activity for Cr(VI) reduction under visible light irradiation.
Bioresource Technology | 2014
Lijian Leng; Xingzhong Yuan; Huajun Huang; Hongwei Jiang; Xiaohong Chen; Guangming Zeng
Bio-oils and bio-chars were obtained from sewage sludge (SS) by liquefaction with ethanol (or acetone) as the solvent at the temperature of 280, 320 and 360°C. The migration and transformation of HMs as Pb, Zn, Cu and Ni during liquefaction were thoroughly investigated. Meanwhile, the environmental risk of HMs in the bio-oils and bio-chars was assessed according to the risk assessment code (RAC). The results showed that the liquefaction solvent and temperature significantly affected the redistribution of HMs. HMs distributed mainly into the bio-chars, with less than 10% into the bio-oils. Increasing liquefaction temperature would promote a higher HM content in bio-oils. The environmental risk of HMs in bio-chars was mitigated compared to SS, especially for Ni. However, the environmental risk of Zn and Ni in bio-oils was undesirably high in comparison with bio-chars. It was suggested that the bio-oil should be pretreated before utilization.
Science of The Total Environment | 2015
Zhihua Xiao; Xingzhong Yuan; Hui Li; Longbo Jiang; Lijian Leng; Xiaohong Chen; Guangming Zeng; Fei Li; Liang Cao
Combustion of pelletized municipal sewage sludge (MSS) can generate pestilent byproducts: fly ash and slag. Comparisons of heavy metal sequential extraction results among MSS, fly ash and slag showed that after combustion, the bioavailable heavy metal fractions (acid soluble/exchangeable, reducible and oxidizable fractions) were mostly transformed into the very stable heavy metal fractions (residual fractions). On the other hand, the results of toxicity characteristic leaching procedure (TCLP), diethylenetriamine pentaacetic acid and HCl extraction (phyto-accessibility assessment) demonstrated that the mobility and toxicity of heavy metals were greatly reduced. The direct and long-term bioavailability and eco-toxicity of heavy metals in fly ash and slag were relieved, which implied that combustion of pelletized MSS could be a promising and completely safe disposal technology for MSS treatment.
Bioresource Technology | 2015
Jianguang Shao; Xingzhong Yuan; Lijian Leng; Huajun Huang; Longbo Jiang; Hou Wang; Xiaohong Chen; Guangming Zeng
Municipal sewage sludge, paper mill sludge, and slaughterhouse sludge were pyrolyzed and liquefied for the production of bio-char. The migration and transformation behavior of Cu, Cr, and Zn during pyrolysis and liquefaction of these sludges were studied. Pyrolysis and liquefaction promoted mobile fraction (F1 and F2) to stable fraction (F3 and F4). The results showed that pyrolysis and liquefaction largely affected the redistribution of Cu and Zn in raw materials. The environmental risk assessment results indicated that the environmental risk levels of Cu and Zn were significantly reduced in bio-char, and risk level of Cr was slightly decreased after pyrolysis or liquefaction. Both pyrolysis and liquefaction were promising detoxification technologies for the three sludges in terms of the mitigation of heavy metals toxicity. It was suggested that dewatered sludge could be reduced toxicity/risk before utilization by pyrolysis or liquefaction technology, especially for Cu and Zn in slaughterhouse sludge.
Bioresource Technology | 2016
Lijian Leng; Xingzhong Yuan; Jianguang Shao; Huajun Huang; Hou Wang; Hui Li; Xiaohong Chen; Guangming Zeng
Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS.
Environmental science. Nano | 2017
Xingzhong Yuan; Longbo Jiang; Xiaohong Chen; Lijian Leng; Hou Wang; Zhibin Wu; Ting Xiong; Jie Liang; Guangming Zeng
Novel and efficient Z-scheme Ag2CO3/Ag/WO3 with excellent visible-light-driven photocatalytic performance was fabricated using a facile deposition and photochemical reduction process. Surface, morphological, and structural properties of the resulting materials were characterized using N2 sorption–desorption and Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV-vis and photoluminescence spectroscopy. The photocatalytic performances of the Ag2CO3/Ag/WO3 composites were evaluated by the degradation of rhodamine B (RhB), methyl orange (MO), ciprofloxacin (CIP), and tetracycline hydrochloride (TC) under visible light irradiation. The results demonstrate that the novel Z-scheme Ag2CO3/Ag/WO3 composites exhibit higher photocatalytic activity than pure Ag2CO3 rods and WO3 nanoparticles. The enhanced photocatalytic activity of Ag2CO3/Ag/WO3 can be ascribed to the extended absorption in the visible light region caused by a surface plasmon resonance (SPR) effect, effective separation of photogenerated charges, and the formation of a Z-scheme system. In addition, the photocatalyst exhibits high stability and reusability. This work could offer a new insight into the design and fabrication of advanced materials with Z-scheme structures for photocatalytic applications for organic pollutants removal from wastewater.
Separation Science and Technology | 2014
Hou Wang; Xingzhong Yuan; Zhibin Wu; Lele Wang; Xin Peng; Lijian Leng; Guangming Zeng
Cinnamomum camphora sawdust (CCS) was employed as a cheap and effective biosorbent to remove basic dye from aqueous solutions. The biosorbent was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Adsorption experiments were carried out in a batch system as a function of initial pH, adsorbent dose and particle size, ionic strength, initial dye concentration, and reaction temperature. The selected basic dye (malachite green) adsorption onto CCS significantly depended on these factors. By comparative kinetic analysis, the rate of sorption was conformed with good correlation to pseudo-second-order kinetics. Equilibrium data were fitted well by Langmuir isotherm with the maximum adsorption capacity of 155.0 mg/g at the temperature of 318 K and pH 7.0 ± 0.1. Thermodynamic parameters proved that malachite green dye biosorption process was spontaneous and endothermic within the investigated temperature range. The mechanism of adsorption was also studied. It was found that the adsorption of malachite green onto CCS was mainly governed by film diffusion. The electrostatic attractions and ionic interactions between malachite green dye and CCS might be responsible for the adsorption process. The comparative investigation suggested that the sawdust could be considered as a potential adsorbent for malachite green dye removal from wastewater.