Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lijin Xia is active.

Publication


Featured researches published by Lijin Xia.


Journal of Nanobiotechnology | 2010

Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection

Lijin Xia; Scott C. Lenaghan; Mingjun Zhang; Zhili Zhang; Quanshui Li

BackgroundOver the last decade safety concerns have arisen about the use of metal-based nanoparticles in the cosmetics field. Metal-based nanoparticles have been linked to both environmental and animal toxicity in a variety of studies. Perhaps the greatest concern involves the large amounts of TiO2 nanoparticles that are used in commercial sunscreens. As an alternative to using these potentially hazardous metal-based nanoparticles, we have isolated organic nanoparticles from English ivy (Hedera helix). In this study, ivy nanoparticles were evaluated for their potential use in sunscreens based on four criteria: 1) ability to absorb and scatter ultraviolet light, 2) toxicity to mammalian cells, 3) biodegradability, and 4) potential for diffusion through skin.ResultsPurified ivy nanoparticles were first tested for their UV protective effects using a standard spectrophotometric assay. Next the cell toxicity of the ivy nanoparticles was compared to TiO2 nanoparticles using HeLa cells. The biodegradability of these nanoparticles was also determined through several digestion techniques. Finally, a mathematical model was developed to determine the potential for ivy nanoparticles to penetrate through human skin. The results indicated that the ivy nanoparticles were more efficient in blocking UV light, less toxic to mammalian cells, easily biodegradable, and had a limited potential to penetrate through human skin. When compared to TiO2 nanoparticles, the ivy nanoparticles showed decreased cell toxicity, and were easily degradable, indicating that they provided a safer alternative to these nanoparticles.ConclusionsWith the data collected from this study, we have demonstrated the great potential of ivy nanoparticles as a sunscreen protective agent, and their increased safety over commonly used metal oxide nanoparticles.


Journal of Adhesion Science and Technology | 2014

Inspiration from the natural world: from bio-adhesives to bio-inspired adhesives

Pelagie M. Favi; Sijia Yi; Scott C. Lenaghan; Lijin Xia; Mingjun Zhang

Advances in materials science and engineering through bio-inspiration, at both the micro- and nanoscales, have flourished over recent years. By understanding principles used in nature to produce adhesives and other substances of interest, the field of bio-inspired engineering has emerged as an important area of innovation. In this review, we will focus on bio-adhesives based on three main mechanisms of generating attachment: dry, wet, and chemical adhesion. Dry adhesion, involving micro- to nanoscale filamentous structures, is used by many insects and reptiles to rapidly climb surfaces. Tree frogs and some insects make use of wet adhesion by leveraging capillary forces through the design of attaching structures that increases liquid drainage, and hence increases frictional contact. Finally, chemical adhesion is used by many plants and mollusks, which secrete adhesives composed of proteins, polysaccharides and carbohydrates to generate the strong forces necessary for adhesion. This paper reviews recent discoveries in animal and plant bio-adhesives, and details the mechanisms used in several representative biological systems. We extend the review to include the fundamental principles functioning in each form of adhesion at the micro- and nanoscales. This fast emerging research area has significant implications in the future design of bio-inspired adhesives, and offers further potential for a variety of applications.


Journal of Nanobiotechnology | 2010

Nanofibers and nanoparticles from the insect- capturing adhesive of the Sundew (Drosera) for cell attachment

Mingjun Zhang; Scott C. Lenaghan; Lijin Xia; Lixin Dong; Wei He; William R. Henson; Xudong Fan

BackgroundThe search for naturally occurring nanocomposites with diverse properties for tissue engineering has been a major interest for biomaterial research. In this study, we investigated a nanofiber and nanoparticle based nanocomposite secreted from an insect-capturing plant, the Sundew, for cell attachment. The adhesive nanocomposite has demonstrated high biocompatibility and is ready to be used with minimal preparation.ResultsAtomic force microscopy (AFM) conducted on the adhesive from three species of Sundew found that a network of nanofibers and nanoparticles with various sizes existed independent of the coated surface. AFM and light microscopy confirmed that the pattern of nanofibers corresponded to Alcian Blue staining for polysaccharide. Transmission electron microscopy identified a low abundance of nanoparticles in different pattern form AFM observations. In addition, energy-dispersive X-ray spectroscopy revealed the presence of Ca, Mg, and Cl, common components of biological salts. Study of the material properties of the adhesive yielded high viscoelasticity from the liquid adhesive, with reduced elasticity observed in the dried adhesive. The ability of PC12 neuron-like cells to attach and grow on the network of nanofibers created from the dried adhesive demonstrated the potential of this network to be used in tissue engineering, and other biomedical applications.ConclusionsThis discovery demonstrates how a naturally occurring nanofiber and nanoparticle based nanocomposite from the adhesive of Sundew can be used for tissue engineering, and opens the possibility for further examination of natural plant adhesives for biomedical applications.


Journal of Nanoparticle Research | 2013

Nano-fillers to tune Young’s modulus of silicone matrix

Lijin Xia; Zhonghua Xu; Leming Sun; Patrick M. Caveney; Mingjun Zhang

In this study, we investigated nanoparticles, nanofibers, and nanoclays for their filler effects on tuning the Young’s modulus of silicone matrix, a material with broad in vivo applications. Nano-fillers with different shapes, sizes, and surface properties were added into silicone matrix, and then their filler effects were evaluated through experimental studies. It was found that spherical nanoparticles could clearly improve Young’s modulus of the silicone matrix, while nanoclays and carbon nanofibers had limited effects. Smaller spherical nanoparticles were better in performance compared to larger nanoparticles. In addition, enhanced distribution of the nanoparticles in the matrix has been observed to improve the filler effect. In order to minimize toxicity of the nanoparticles for in vivo applications, spherical nanoparticles coated with amine, acid, or hydroxide groups were also investigated, but they were found only to diminish the filler effect of nanoparticles. This study demonstrated that spherical nanoparticles could serve as fillers to tune Young’s modulus of silicone matrix for potential applications in medicine.


Journal of Mathematical Biology | 2012

Evolutionary game theoretic strategy for optimal drug delivery to influence selection pressure in treatment of HIV-1

Yu Wu; Mingjun Zhang; Jing Wu; Xiaopeng Zhao; Lijin Xia

Cytotoxic T-lymphocyte (CTL) escape mutation is associated with long-term behaviors of human immunodeficiency virus type 1 (HIV-1). Recent studies indicate heterogeneous behaviors of reversible and conservative mutants while the selection pressure changes. The purpose of this study is to optimize the selection pressure to minimize the long-term virus load. The results can be used to assist in delivery of highly loaded cognate peptide-pulsed dendritic cells (DC) into lymph nodes that could change the selection pressure. This mechanism may be employed for controlled drug delivery. A mathematical model is proposed in this paper to describe the evolutionary dynamics involving viruses and T cells. We formulate the optimization problem into the framework of evolutionary game theory, and solve for the optimal control of the selection pressure as a neighborhood invader strategy. The strategy dynamics can be obtained to evolve the immune system to the best controlled state. The study may shed light on optimal design of HIV-1 therapy based on optimization of adaptive CTL immune response.


Bioinspiration & Biomimetics | 2011

A naturally occurring nanomaterial from the Sundew (Drosera) for tissue engineering

Scott C. Lenaghan; K Serpersu; Lijin Xia; Wei He; Mingjun Zhang

In recent years advances have been made in the design of novel materials for tissue engineering through the use of polysaccharides. This study evaluated the ability of a naturally secreted polysaccharide adhesive from the Sundew (Drosera capensis) as a support for cell growth. The Sundew adhesive has several advantages including its high elasticity and antibiotic nature. By coating glass cover slips with the Sundew adhesive, a network of nanofibers was generated that was capable of promoting attachment and differentiation of a model neuronal cell line, PC-12. We also demonstrated the potential of this material for repairing bone and soft tissue injuries, by testing attachment of osteoblasts and endothelial cells. Finally, it was determined that the Sundew biomaterial was stable through testing by atomic force microscopy and prolonged cell growth. This work has proven the capabilities of using a nanomaterial derived from the Sundew adhesive for the purpose of tissue engineering.


Journal of the Royal Society Interface | 2013

Isolation and chemical analysis of nanoparticles from English ivy (Hedera helix L.).

Scott C. Lenaghan; Jason N. Burris; Karuna Chourey; Yujian Huang; Lijin Xia; Belinda S. Lady; Ritin Sharma; Chongle Pan; Zorabel LeJeune; Shane Foister; Robert L. Hettich; C. Neal Stewart; Mingjun Zhang

Bio-inspiration for novel adhesive development has drawn increasing interest in recent years with the discovery of the nanoscale morphology of the gecko footpad and mussel adhesive proteins. Similar to these animal systems, it was discovered that English ivy (Hedera helix L.) secretes a high strength adhesive containing uniform nanoparticles. Recent studies have demonstrated that the ivy nanoparticles not only contribute to the high strength of this adhesive, but also have ultraviolet (UV) protective abilities, making them ideal for sunscreen and cosmetic fillers, and may be used as nanocarriers for drug delivery. To make these applications a reality, the chemical nature of the ivy nanoparticles must be elucidated. In the current work, a method was developed to harvest bulk ivy nanoparticles from an adventitious root culture system, and the chemical composition of the nanoparticles was analysed. UV/visible spectroscopy, inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy and electrophoresis were used in this study to identify the chemical nature of the ivy nanoparticles. Based on this analysis, we conclude that the ivy nanoparticles are proteinaceous.


Journal of Nanobiotechnology | 2013

Characterization of physicochemical properties of ivy nanoparticles for cosmetic application.

Yujian Huang; Scott C. Lenaghan; Lijin Xia; Jason N. Burris; C. Neal Stewart; Mingjun Zhang

BackgroundNaturally occurring nanoparticles isolated from English ivy (Hedera helix) have previously been proposed as an alternative to metallic nanoparticles as sunscreen fillers due to their effective UV extinction property, low toxicity and potential biodegradability.MethodsThis study focused on analyzing the physicochemical properties of the ivy nanoparticles, specifically, those parameters which are crucial for use as sunscreen fillers, such as pH, temperature, and UV irradiation. The visual transparency and cytotoxicity of ivy nanoparticles were also investigated comparing them with other metal oxide nanoparticles.ResultsResults from this study demonstrated that, after treatment at 100°C, there was a clear increase in the UV extinction spectra of the ivy nanoparticles caused by the partial decomposition. In addition, the UVA extinction spectra of the ivy nanoparticles gradually reduced slightly with the decrease of pH values in solvents. Prolonged UV irradiation indicated that the influence of UV light on the stability of the ivy nanoparticle was limited and time-independent. Compared to TiO2 and ZnO nanoparticles, ivy nanoparticles showed better visual transparency. Methylthiazol tetrazolium assay demonstrated that ivy nanoparticles exhibited lower cytotoxicity than the other two types of nanoparticles. Results also suggested that protein played an important role in modulating the three-dimensional structure of the ivy nanoparticles.ConclusionsBased on the results from this study it can be concluded that the ivy nanoparticles are able to maintain their UV protective capability at wide range of temperature and pH values, further demonstrating their potential as an alternative to replace currently available metal oxide nanoparticles in sunscreen applications.


Bellman Prize in Mathematical Biosciences | 2010

Immunodominance analysis through interactions of CD8+ T cells and DCs in lymph nodes.

Yu Wu; Lijin Xia; Mingjun Zhang; Xiaopeng Zhao

Immunodominance is a common phenomenon observed in multiple epitopes immune systems. Previous studies hypothesize that the competition among CD8+ T cell responses against different epitopes can be used to explain immunodominance. This paper proposes a mathematical model that describes the dynamics of CD8+ T cells primed by antigen-presenting dendritic cells (DCs) in the lymph nodes, and shows that the overall avidity of the interactions between peptide-specific T cells and cognate antigen-bearing DCs may determine the immunodominance. The model suggests the probability that a peptide-specific T cell be immunodominant is proportional to (1) the cognate T cell receptor (TCR) affinity, (2) the number of complexes of cognate peptide and major histocompatibility complex (pMHC) per DC, and (3) the half-life of cognate peptide-specific pMHC. The model predicts a threshold density of pMHC complexes for T cell activation. These observations from the mathematical model are consistent with experimental studies in the open literature. For DC-based vaccine design, the model suggests a strategy of immunotherapy based on the injection of cognate antigen-pulsed DCs.


Colloids and Surfaces B: Biointerfaces | 2011

Evaluation of the nanofibrillar structure of Dioscorea opposite extract for cell attachment

Lijin Xia; Scott C. Lenaghan; Andrew B. Wills; Yinyuan Chen; Mingjun Zhang

Dioscorea opposite has been widely used in traditional herbal medicine in the Far East, ameliorating symptoms ranging from abdominal swelling to pain. Previous studies have focused on understanding the chemical components that lead to the medicinal effects of the extract. In this study, we examined the nanostructures formed by the soluble and insoluble parts of the sticky excretion from the mucilaginous rhizome of Dioscorea opposite and evaluated their cellular response. Using atomic force microscopy, we found that the soluble extract of the excretion had the capacity to form a nanofibrillar scaffold composed of uniform ∼10 nm nanofibers with a typical pore size of ∼40 nm, while the insoluble extract formed some nanofibers without specific structure. Cellular response to the two types of nanostructures was tested by seeding with HeLa and MC3T3 cells. The observations suggested that the nanofibrillar scaffold formed from the soluble extract provided an excellent platform for HeLa cell attachment and growth and to a lesser degree for MC3T3 cells, while nanofibers from the insoluble extract displayed no cell attachment and growth. Further analysis by direct incubation of the soluble extract with growing cells indicated that components from the extract preferentially bound to HeLa cells, but not to MC3T3 cells, which might help explain the observed preference of HeLa cells on the nanofibrillar scaffold. The nanofibrillar scaffold created from the Dioscorea opposite extract and its ability to sustain the attachment of specific cell types demonstrate the potential for this natural nanomaterial in tissue engineering applications.

Collaboration


Dive into the Lijin Xia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sijia Yi

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leming Sun

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Yujian Huang

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Wu

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Wei He

University of Tennessee

View shared research outputs
Researchain Logo
Decentralizing Knowledge