Lijing Xin
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lijing Xin.
Journal of Magnetic Resonance | 2008
Vladimir Mlynarik; Cristina Ramona Cudalbu; Lijing Xin; Rolf Gruetter
Ultra-short echo-time proton single voxel spectra of rat brain were obtained on a 14.1T 26 cm horizontal bore system. At this field, the fitted linewidth in the brain tissue of adult rats was about 11 Hz. New, separated resonances ascribed to phosphocholine, glycerophosphocholine and N-acetylaspartate were detected for the first time in vivo in the spectral range of 4.2-4.4 ppm. Moreover, improved separation of the resonances of lactate, alanine, gamma-aminobutyrate, glutamate and glutathione was observed. Metabolite concentrations were estimated by fitting in vivo spectra to a linear combination of simulated spectra of individual metabolites and a measured spectrum of macromolecules (LCModel). The calculated concentrations of metabolites were generally in excellent agreement with those obtained at 9.4T. These initial results further indicated that increasing magnetic field strength to 14.1T enhanced spectral resolution in (1)H NMR spectroscopy. This implies that the quantification of the neurochemical profile in rodent brain can be achieved with improved accuracy and precision.
Journal of Neuroscience Research | 2013
Benoı̂t Schaller; Ralf Mekle; Lijing Xin; Nicolas Kunz; Rolf Gruetter
After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc) in excess of those in oxygen (CMRO2) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1–2 min of activation.
NeuroImage | 2014
Benoît Schaller; Lijing Xin; Kieran O'Brien; Arthur W. Magill; Rolf Gruetter
Recent studies at high field (7Tesla) have reported small metabolite changes, in particular lactate and glutamate (below 0.3μmol/g) during visual stimulation. These studies have been limited to the visual cortex because of its high energy metabolism and good magnetic resonance spectroscopy (MRS) sensitivity using surface coil. The aim of this study was to extend functional MRS (fMRS) to investigate for the first time the metabolite changes during motor activation at 7T. Small but sustained increases in lactate (0.17μmol/g±0.05μmol/g, p<0.001) and glutamate (0.17μmol/g±0.09μmol/g, p<0.005) were detected during motor activation followed by a return to the baseline after the end of activation. The present study demonstrates that increases in lactate and glutamate during motor stimulation are small, but similar to those observed during visual stimulation. From the observed glutamate and lactate increase, we inferred that these metabolite changes may be a general manifestation of the increased neuronal activity. In addition, we propose that the measured metabolite concentration increases imply an increase in ΔCMRO2 that is transiently below that of ΔCMRGlc during the first 1 to 2min of the stimulation.
Molecular Psychiatry | 2015
Aline Monin; Philipp S. Baumann; Alessandra Griffa; Lijing Xin; Ralf Mekle; Margot Fournier; Christophe Butticaz; Magali Klaey; Jan-Harry Cabungcal; Pascal Steullet; Carina Ferrari; Michel Cuenod; Rolf Gruetter; Jean-Philippe Thiran; Patric Hagmann; Philippe Conus; Kim Q. Do
Schizophrenia pathophysiology implies both abnormal redox control and dysconnectivity of the prefrontal cortex, partly related to oligodendrocyte and myelin impairments. As oligodendrocytes are highly vulnerable to altered redox state, we investigated the interplay between glutathione and myelin. In control subjects, multimodal brain imaging revealed a positive association between medial prefrontal glutathione levels and both white matter integrity and resting-state functional connectivity along the cingulum bundle. In early psychosis patients, only white matter integrity was correlated with glutathione levels. On the other side, in the prefrontal cortex of peripubertal mice with genetically impaired glutathione synthesis, mature oligodendrocyte numbers, as well as myelin markers, were decreased. At the molecular levels, under glutathione-deficit conditions induced by short hairpin RNA targeting the key glutathione synthesis enzyme, oligodendrocyte progenitors showed a decreased proliferation mediated by an upregulation of Fyn kinase activity, reversed by either the antioxidant N-acetylcysteine or Fyn kinase inhibitors. In addition, oligodendrocyte maturation was impaired. Interestingly, the regulation of Fyn mRNA and protein expression was also impaired in fibroblasts of patients deficient in glutathione synthesis. Thus, glutathione and redox regulation have a critical role in myelination processes and white matter maturation in the prefrontal cortex of rodent and human, a mechanism potentially disrupted in schizophrenia.
Magnetic Resonance in Medicine | 2009
Cristina Ramona Cudalbu; Vladimir Mlynarik; Lijing Xin; Rolf Gruetter
Knowledge of T1 relaxation times can be important for accurate relative and absolute quantification of brain metabolites, for sensitivity optimizations, for characterizing molecular dynamics, and for studying changes induced by various pathological conditions. 1H T1 relaxation times of a series of brain metabolites, including J‐coupled ones, were determined using a progressive saturation (PS) technique that was validated with an adiabatic inversion‐recovery (IR) method. The 1H T1 relaxation times of 16 functional groups of the neurochemical profile were measured at 14.1T and 9.4T. Overall, the T1 relaxation times found at 14.1T were, within the experimental error, identical to those at 9.4T. The T1s of some coupled spin resonances of the neurochemical profile were measured for the first time (e.g., those of γ‐aminobutyrate [GABA], aspartate [Asp], alanine [Ala], phosphoethanolamine [PE], glutathione [GSH], N‐acetylaspartylglutamate [NAAG], and glutamine [Gln]). Our results suggest that T1 does not increase substantially beyond 9.4T. Furthermore, the similarity of T1 among the metabolites (∼1.5 s) suggests that T1 relaxation time corrections for metabolite quantification are likely to be similar when using rapid pulsing conditions. We therefore conclude that the putative T1 increase of metabolites has a minimal impact on sensitivity when increasing B0 beyond 9.4T. Magn Reson Med, 2009.
Magnetic Resonance in Medicine | 2014
Benoît Schaller; Lijing Xin; Rolf Gruetter
The macromolecule signal plays a key role in the precision and the accuracy of the metabolite quantification in short‐TE 1H MR spectroscopy. Macromolecules have been reported at 1.5 Tesla (T) to depend on the cerebral studied region and to be age specific. As metabolite concentrations vary locally, information about the profile of the macromolecule signal in different tissues may be of crucial importance.
Journal of Neurochemistry | 2008
Florence D. Morgenthaler; Ruud van Heeswijk; Lijing Xin; Sabrina Laus; Hanne Frenkel; Hongxia Lei; Rolf Gruetter
The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C‐labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C‐Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N‐acetyl‐aspartate IE in vivo: After [1‐13C]‐Glc ingestion, glycogen IE was 2.2 ± 0.1 fold that of N‐acetyl‐aspartate (n = 11, R2 = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t‐test, p = 0.37), implying isotopic steady‐state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean ± SD: 5.8 ± 0.7 μmol/g) was in excellent agreement with that in vitro (6.4 ± 0.6 μmol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover.
Journal of Neurochemistry | 2014
Bernard Lanz; Lijing Xin; Philippe Millet; Rolf Gruetter
Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo 13C NMR spectroscopy coupled with the infusion labeled glial‐specific substrate, such as acetate. In this study, we infused alpha‐chloralose anesthetized rats with [2‐13C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using 1H‐[13C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two‐compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vxg and Vxn) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations.
NMR in Biomedicine | 2013
Benoît Schaller; Lijing Xin; Cristina Ramona Cudalbu; Rolf Gruetter
The broad resonances underlying the entire 1H NMR spectrum of the brain, ascribed to macromolecules, can influence metabolite quantification. At the intermediate field strength of 3 T, distinct approaches for the determination of the macromolecule signal, previously used at either 1.5 or 7 T and higher, may become equivalent. The aim of this study was to evaluate, at 3 T for healthy subjects using LCModel, the impact on the metabolite quantification of two different macromolecule approaches: (i) experimentally measured macromolecules; and (ii) mathematically estimated macromolecules. Although small, but significant, differences in metabolite quantification (up to 23% for glutamate) were noted for some metabolites, 10 metabolites were quantified reproducibly with both approaches with a Cramer–Rao lower bound below 20%, and the neurochemical profiles were therefore similar. We conclude that the mathematical approximation can provide sufficiently accurate and reproducible estimation of the macromolecule contribution to the 1H spectrum at 3 T. Copyright
Schizophrenia Bulletin | 2016
Lijing Xin; Ralf Mekle; Margot Fournier; Philipp S. Baumann; Carina Ferrari; Luis Alameda; Raoul Jenni; Huanxiang Lu; Benoît Schaller; Michel Cuenod; Philippe Conus; Rolf Gruetter; Kim Q. Do
BACKGROUND Oxidative stress and glutathione (GSH) metabolism dysregulation has been implicated in the pathophysiology of schizophrenia. GAG-trinucleotide repeat (TNR) polymorphisms in the glutamate-cysteine ligase catalytic gene (GCLC), the rate-limiting enzyme for GSH synthesis, are associated with schizophrenia. In addition, GSH may serve as a reserve pool for neuronal glutamate (Glu) through the γ-glutamyl cycle. The aim of this study is to investigate brain [GSH] and its association with GCLC polymorphism, peripheral redox indices and brain Glu. METHODS Magnetic resonance spectroscopy was used to measure [GSH] and [Glu] in the medial prefrontal cortex (mPFC) of 25 early-psychosis patients and 33 controls. GCLC polymorphism was genotyped, glutathione peroxidases (GPx) and glutathione reductase (GR) activities were determined in blood cells. RESULTS Significantly lower [GSHmPFC] in GCLC high-risk genotype subjects were revealed as compared to low-risk genotype subjects independent of disease status. In male subjects, [GSHmPFC] and blood GPx activities correlate positively in controls (P = .021), but negatively in patients (P = .039). In GCLC low-risk genotypes, [GlumPFC] are lower in patients, while it is not the case for high-risk genotypes. CONCLUSIONS GCLC high-risk genotypes are associated with low [GSHmPFC], highlighting that GCLC polymorphisms should be considered in pathology studies of cerebral GSH. Low brain GSH levels are related to low peripheral oxidation status in controls but with high oxidation status in patients, pointing to a dysregulated GSH homeostasis in early psychosis patients. GCLC polymorphisms and disease associated correlations between brain GSH and Glu levels may allow patients stratification.