Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lijun Jia is active.

Publication


Featured researches published by Lijun Jia.


Cell Death and Disease | 2012

Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis

Yongchao Zhao; Xiufang Xiong; Lijun Jia; Yi Min Sun

MLN4924, a newly discovered small molecule inhibitor of NEDD8-activating enzyme (NAE), inactivates Cullin-RING E3 ubiquitin Ligases (CRLs) by blocking cullin neddylation. As a result, MLN4924 causes accumulation of several key substrates of CRLs and effectively suppresses tumor cell growth by inducing apoptosis and senescence. However, the role of MLN4924 in induction of autophagy and its biological significance are totally unknown. Here we showed that MLN4924 effectively induces autophagy in both time- and dose-dependent manners in multiple human cancer lines, indicating a general phenomenon. Mechanistically, by inactivating CRLs, MLN4924 causes accumulation of DEPTOR and HIF1α. The siRNA knockdown and gene KO studies showed that DEPTOR and the HIF1-REDD1-TSC1 axis are responsible for MLN4924-induced autophagy via inhibiting mTORC1. Biologically, autophagy is a survival signal to tumor cells, and blockage of autophagy via siRNA knockdown, gene KO and small molecule inhibitor remarkably enhanced MLN4924-induced apoptosis. Our study reveals an uncharacterized mechanism of MLN4924 action and provides the proof-of-concept evidence for strategic drug combination of MLN4924 with an autophagy inhibitor for maximal killing of tumor cells via enhancing apoptosis.


Cancer Research | 2009

Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition.

Zhen Wang; Min Zheng; Zhichuan Li; Ruiguo Li; Lijun Jia; Xiufang Xiong; Noel Southall; Shaomeng Wang; Menghang Xia; Christopher P. Austin; Wei Zheng; Zijian Xie; Yi Sun

p53 is regulated at multiple levels. We report here that p53, in multiple lines of human cancer cells, is down-regulated by cardiac glycoside drugs digoxin and ouabain, potent inhibitors of Na(+)/K(+)-ATPase. These drugs reduced the basal levels of p53 protein at nanomolar concentrations in a dose-, time-, and cancer cell line-dependent manner, but independent of p53 status of wild-type or mutant. The drugs also reduced the levels of p53 induced by its activators as well as p53 transfected into human cancer cells, regardless of its status. Interestingly, the drugs had no effect on endogenous p53 in two immortalized human cell lines. Mechanistically, p53 reduction occurred not at the mRNA levels but at the protein levels, as a result of reduced protein synthesis rather than enhanced degradation. The cellular sensitivity to drug-induced p53 reduction was not associated with the levels of alphasubunits of Na(+)/K(+)-ATPase in different cell lines. Although lowering extracellular K(+) did not reduce p53 as did ouabain and digoxin, it did potentiate both digoxin- and ouabain-induced p53 reduction in sensitive lines. Finally, p53 reduction seems to be triggered by activation of Src/mitogen-activated protein kinase (MAPK) signaling pathways upon drug binding to the Na(+)/K(+)-ATPase and can be completely blocked by the inhibitors of Src or MAP/ERK kinase. This is the first report that cardiac glycoside drugs, by initiating the Src/MAPK signaling pathways, reduce the p53 levels via inhibition of p53 protein synthesis. The drugs may be useful in the treatment of human cancers with a gain-of-function p53 mutation.


Cancer Research | 2009

ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2-M arrest, apoptosis, and senescence.

Lijun Jia; Maria S. Soengas; Yi Sun

Regulator of Cullins-1 (ROC1) or Ring Box Protein-1 (RBX1) is a RING component of SCF (Skp-1, cullins, F-box proteins) E3 ubiquitin ligases, which regulate diverse cellular processes by targeting a variety of substrates for degradation. However, little is known about the role of ROC1 in human cancer. Here, we report that ROC1 is ubiquitously overexpressed in primary human tumor tissues and human cancer cell lines. ROC1 silencing by siRNA significantly inhibited the growth of multiple human cancer cell lines via induction of senescence and apoptosis as well as G(2)-M arrest. Senescence induction is coupled with DNA damage in p53/p21- and p16/pRB-independent manners. Apoptosis is associated with accumulation of Puma and reduction of Bcl-2, Mcl-1, and survivin; and G(2)-M arrest is associated with accumulation of 14-3-3sigma and elimination of cyclin B1 and Cdc2. In U87 glioblastoma cells, these phenotypic changes occur sequentially upon ROC1 silencing, starting with G(2)-M arrest, followed by apoptosis and senescence. Thus, ROC1 silencing triggers multiple death and growth arrest pathways to effectively suppress tumor cell growth, suggesting that ROC1 may serve as a potential anticancer target.


Cell Research | 2015

High salt primes a specific activation state of macrophages, M(Na)

Wu-Chang Zhang; Xiao-Jun Zheng; Lin-Juan Du; Jian-Yong Sun; Zhu-Xia Shen; Chaoji Shi; Shuyang Sun; Zhiyuan Zhang; Xiao-Qing Chen; Mu Qin; Xu Liu; Jun Tao; Lijun Jia; Heng-yu Fan; Bin(周斌) Zhou; Ying(余鹰) Yu; Hao(应浩) Ying; Lijian Hui; Xiaolong Liu; Xianghua Yi; Xiaojing Liu; Lanjing Zhang; ShengZhong(段胜仲) Duan

High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na).


Clinical Cancer Research | 2010

Validation of SAG/RBX2/ROC2 E3 Ubiquitin Ligase as an Anticancer and Radiosensitizing Target

Lijun Jia; Jie Yang; Xinbao Hao; Min Zheng; Hongbin He; Xiufang Xiong; Liang Xu; Yi Sun

Purpose: Sensitive to apoptosis gene (SAG; also known as RBX2 or ROC2) was originally cloned as a redox-inducible antioxidant protein and was later characterized as a RING component of SCF E3 ubiquitin ligases. SAG overexpression inhibits apoptosis induced by many stimuli both in vitro and in vivo. SAG mRNA was overexpressed in human lung tumor tissues with a correlation to poor patient survival. To investigate whether SAG serves as an anticancer target, we determined the effect of SAG silencing on cell proliferation, survival, and radiosensitivity. Experimental Design: SAG protein expression in human tumors was evaluated by immunohistochemical staining using tumor tissue arrays. SAG expression in cancer cells was knocked down by siRNA silencing. The anticancer effects of SAG silencing were evaluated by in vitro assays for cell growth and survival and by an in vivo orthotopic xenograft tumor model. Radiosensitization by SAG silencing of human cancer cells was determined by clonogenic survival assay. Apoptosis induction was evaluated by fluorescence-activated cell sorting analysis, caspase-3 activation assay, and Western blotting of apoptosis-associated proteins. Results: SAG was overexpressed in multiple human tumor tissues compared with their normal counterparts. SAG silencing selectively inhibited cancer cell proliferation, suppressed in vivo tumor growth, and sensitized radiation-resistant cancer cells to radiation. Mechanistically, SAG silencing induced apoptosis with accumulation of NOXA, whereas SAG overexpression reduced NOXA levels and shortened NOXA protein half-life. Conclusions: The findings showed that SAG E3 ubiquitin ligase plays an essential role in cancer cell proliferation and tumor growth and may serve as a promising anticancer and radiosensitizing target. Clin Cancer Res; 16(3); 814–24


Journal of the National Cancer Institute | 2014

Overactivated Neddylation Pathway as a Therapeutic Target in Lung Cancer

Lihui Li; Mingsong Wang; Guangyang Yu; Ping Chen; Hui Li; Dongping Wei; Ji Zhu; Li Xie; Huixun Jia; Jie-Yi Shi; Chunjie Li; Wantong Yao; Yanchun Wang; Qiang Gao; Lak Shin Jeong; Hyuk Woo Lee; Jinha Yu; Fengqing Hu; Ju Mei; Ping Wang; Yiwei Chu; Hui Qi; Meng Yang; Ziming Dong; Yi Sun; Robert M. Hoffman; Lijun Jia

BACKGROUND A number of oncoproteins and tumor suppressors are known to be neddylated, but whether the neddylation pathway is entirely activated in human cancer remains unexplored. METHODS NEDD8-activating enzyme (NAE) (E1) and NEDD8-conjugating enzyme (E2) expression and global-protein neddylation were examined by immunohistochemistry, immunoblotting, and real-time polymerase chain reaction analysis. Cell proliferation, clonogenic survival, migration, and motility in vitro, as well as tumor formation and metastasis in vivo, were determined upon neddylation inhibition by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Survival was analyzed with Kaplan-Meier methods and compared by the log-rank test. All statistical tests were two-sided. RESULTS The entire neddylation pathway, including NEDD8-activating enzyme E1, NEDD8-conjugating enzyme E2, and global-protein neddylation, is overactivated in both lung adenocarcinoma and squamous-cell carcinoma. Compared with lung adenocarcinoma patients with low expression, those with high expression had worse overall survival (NEDD8-activating enzyme E1 subunit 1 [NAE1]: hazard ratio [HR] = 2.07, 95% confidence interval [CI] = 0.95 to 4.52, P = .07; ubiquitin-conjugating enzyme E2M (UBC12): HR = 13.26, 95% CI = 1.77 to 99.35, P = .01; global protein neddylation: HR = 3.74, 95% CI = 1.65 to 8.47, P = .002). Moreover, inhibition of neddylation by the NAE inhibitor MLN4924 statistically significantly suppressed proliferation, survival, migration, and motility of lung cancer cells in vitro and tumor formation and metastasis in vivo. At the molecular level, MLN4924 inactivated Cullin-RING E3 ligases, led to accumulation of tumor-suppressive Cullin-RING E3 ligase substrates and induced phorbol-12-myristate-13-acetate-induced protein 1 (NOXA)-dependent apoptosis or cellular senescence. CONCLUSIONS Our study highlights the overactivated neddylation pathway in lung cancer development and as a promising therapeutic target.


Developmental Cell | 2011

SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation.

Mingjia Tan; Yongchao Zhao; Sun Jung Kim; Margaret Liu; Lijun Jia; Thomas L. Saunders; Yuan Zhu; Yi Sun

SAG/RBX2/ROC2 protein is an essential RING component of SCF E3 ubiquitin ligase. The role of SAG during embryogenesis remains unknown. We report a critical role for SAG in controlling vascular and neural development by modulating RAS activity via promoting degradation of neurofibromatosis type 1 (NF1). Mice mutant for Sag died at embryonic day 11.5-12.5 with severe abnormalities in vascular and nervous system. Sag inactivation caused Nf1 accumulation and Ras inhibition, which blocks embryonic stem (ES) cells from undergoing endothelial differentiation and inhibits angiogenesis and proliferation in teratomas. Simultaneous Nf1 deletion fully rescues the differentiation defects in Sag(-/-) ES cells and partially rescues vascular and neural defects in Sag(-/-) embryos, suggesting that the effects of Sag deletion may not be solely explained by Nf1 misregulation. Collectively, our study identifies NF1 as a physiological substrate of SAG-CUL1-FBXW7 E3 ligase and establishes a ubiquitin-dependent regulatory mechanism for the NF1-RAS pathway during embryogenesis.


Cell Death & Differentiation | 2013

Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells

Dongqin Yang; Lihui Li; H Liu; Lijun Wu; Zhongguang Luo; H Li; S Zheng; H Gao; Yiwei Chu; Yi Sun; Jie Liu; Lijun Jia

Regulator of Cullins-1 (ROC1) or RING box protein-1 (RBX1) is an essential RING component of Cullin-RING ligase (CRL). Our previous studies showed that ROC1 is required for the growth of several cancer cell lines while ROC1 siRNA silencing inactivates CRL, leading to cell cycle arrest, cell senescence and/or apoptosis. However, it is completely unknown whether ROC1 knockdown triggers autophagic response by inactivating CRL. Moreover, the role of ROC1 in liver cancer remains elusive. In this study, we reported that ROC1 knockdown significantly inhibited the growth of liver cancer cells by sequentially and independently inducing autophagy and p21-dependent cell senescence. Mechanism analysis revealed that ROC1 silencing triggered autophagy by inhibition of mammalian target of rapamycin (mTOR) activity due to accumulation of mTOR-inhibitory protein Deptor, a substrate of CRL. Consistently, Deptor knockdown significantly blocked autophagy response upon ROC1 silencing. Biologically, autophagy response upon ROC1 silencing was a survival signal, and blockage of autophagy pathway sensitized cancer cells to apoptosis. Finally, we demonstrated that ROC1 was overexpressed in hepatocellular carcinomas, which is associated with poor prognosis of liver cancer patients. These findings suggest that ROC1 is an appealing drug target for liver cancer and provide a proof-of-concept evidence for a novel drug combination of ROC1 inhibitor and an autophagy inhibitor for effective treatment of liver cancer by enhancing apoptosis.


Journal of Biological Chemistry | 2011

RBX1 (RING-box protein 1) E3 ubiquitin ligase is required for genomic integrity by modulating DNA replication licensing proteins

Lijun Jia; Jeremy S. Bickel; Jiaxue Wu; Meredith A. Morgan; Hua Li; Jie Yang; Xiaochun Yu; Raymond C. Chan; Yi Sun

RBX1 (RING box protein 1), also known as ROC1 (Regulator of Cullin 1), is an essential component of SCF (Skp1/Cullins/F-box) E3 ubiquitin ligases, which target diverse proteins for proteasome-mediated degradation. Our recent study showed that RBX1 silencing triggered a DNA damage response (DDR) leading to G2-M arrest, senescence, and apoptosis, with the mechanism remaining elusive. Here, we show that, in human cancer cells, RBX1 silencing causes the accumulation of DNA replication licensing proteins CDT1 and ORC1, leading to DNA double-strand breaks, DDR, G2 arrest, and, eventually, aneuploidy. Whereas CHK1 activation by RBX1 silencing is responsible for the G2 arrest, enhanced DNA damage renders cancer cells more sensitive to radiation. In Caenorhabditis elegans, RBX-1 silencing causes CDT-1 accumulation, triggering DDR in intestinal cells, which is largely abrogated by simultaneous CDT-1 silencing. RBX-1 silencing also induces lethality during development of embryos and in adulthood. Thus, RBX1 E3 ligase is essential for the maintenance of mammalian genome integrity and the proper development and viability in C. elegans.


Autophagy | 2012

Inactivation of the Cullin (CUL)-RING E3 ligase by the NEDD8-activating enzyme inhibitor MLN4924 triggers protective autophagy in cancer cells.

Zhongguang Luo; Yongfu Pan; Lak Shin Jeong; Jie Liu; Lijun Jia

The multiunit Cullin (CUL)-RING E3 ligase (CRL) controls diverse biological processes by targeting a mass of substrates for ubiquitination and degradation, whereas its dysfunction causes carcinogenesis. Post-translational neddylation of CUL, a process triggered by the NEDD8-activating enzyme E1 subunit 1 (NAE1), is required for CRL activation. Recently, MLN4924 was discovered via a high-throughput screen as a specific NAE1 inhibitor and first-in-class anticancer drug. By blocking CUL neddylation, MLN4924 inactivates CRL and causes the accumulation of CRL substrates that trigger cell cycle arrest, senescence and/or apoptosis to suppress the growth of cancer cells in vitro and in vivo. Recently, we found that MLN4924 also triggers protective autophagy in response to CRL inactivation. MLN4924-induced autophagy is attributed partially to the inhibition of mechanistic target of rapamycin (also known as mammalian target of rapamycin, MTOR) activity by the accumulation of the MTOR inhibitory protein DEPTOR, as well as reactive oxygen species (ROS)-induced stress. Moreover, the blockage of autophagy response enhances apoptosis in MLN4924-treated cells. Together, our findings not only reveal autophagy as a novel cellular response to CRL inactivation by MLN4924, but also provide a piece of proof-of-concept evidence for the combination of MLN4924 with autophagy inhibitors to enhance therapeutic efficacy.

Collaboration


Dive into the Lijun Jia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lak Shin Jeong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yi Sun

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinha Yu

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge