Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lila E. Mullany is active.

Publication


Featured researches published by Lila E. Mullany.


International Journal of Cancer | 2015

An evaluation and replication of miRNAs with disease stage and colorectal cancer‐specific mortality

Martha L. Slattery; Jennifer S. Herrick; Lila E. Mullany; Nicola Valeri; John R. Stevens; Bette J. Caan; Wade S. Samowitz; Roger K. Wolff

MicroRNAs (miRNAs) have been implicated in colorectal cancer (CRC) development and associated with prognostic indicators such as disease stage and survival. Prognostic associations are often based on few individuals and imprecise. In this study, we utilize population‐based data from 1,141 CRC cases to replicate previously reported associations between 121 miRNAs and disease stage and survival. The Agilent Human miRNA Microarray V19.0 was used to generate miRNA data following a stringent quality control protocol. Assessment of survival was done using Cox Proportional Hazard models adjusting for age, disease stage and tumor molecular phenotype. Five miRNAs were associated with more advanced disease stage; hsa‐miR‐145‐5p and hsa‐miR‐31‐5p showed increased expression with more advanced tumor stage, while hsa‐miR‐200b‐3p, hsa‐miR‐215 and hsa‐miR‐451a had decreased expression with more advanced tumors. Thirteen miRNAs were associated with CRC mortality among individuals diagnosed with colon cancer while 14 were associated with CRC mortality after a diagnosis with rectal cancer. Strongest associations were observed for those miRNAs that were expressed in a small subset of tumors. Most notable associations were for hsa‐miR‐145‐3p [hazard ratio (HR) 2.94, 95% confidence interval (CI) 1.54, 5.61], and hsa‐miR‐9‐3p (HR 10.28, 95% CI 1.31, 80.84) with colon cancer and hsa‐miR‐335‐5p (HR 0.17, 95% CI 0.05, 0.54) for rectal cancer. hsa‐miR‐374a‐5p, hsa‐miR‐570‐3p and hsa‐miR‐18a‐5p significantly reduced the hazard of dying for all cases, regardless of tumor site. Our findings illustrate the need for a large sample to evaluate the association of miRNAs with survival and disease stage in order to determine associations by tumor site.


Carcinogenesis | 2016

MicroRNA profiles in colorectal carcinomas, adenomas and normal colonic mucosa: variations in miRNA expression and disease progression

Martha L. Slattery; Jennifer S. Herrick; Daniel F. Pellatt; John R. Stevens; Lila E. Mullany; Erica Wolff; Michael Hoffman; Wade S. Samowitz; Roger K. Wolff

Summary Roughly 27% of miRNAs are commonly expressed in colonic tissue; of these, over 86% are dysregulated between carcinoma and normal tissue when applying a false discovery rate of 0.05. MiRNA expression from normal to adenoma to carcinoma varied by miRNA and its frequency of expression in the population.


Clinical and translational gastroenterology | 2016

Expression Profiles of miRNA Subsets Distinguish Human Colorectal Carcinoma and Normal Colonic Mucosa.

Daniel F. Pellatt; John R. Stevens; Roger K. Wolff; Lila E. Mullany; Jennifer S. Herrick; Wade S. Samowitz; Martha L. Slattery

OBJECTIVES:MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that are commonly dysregulated in colorectal tumors. The objective of this study was to identify smaller subsets of highly predictive miRNAs.METHODS:Data come from population-based studies of colorectal cancer conducted in Utah and the Kaiser Permanente Medical Care Program. Tissue samples were available for 1,953 individuals, of which 1,894 had carcinoma tissue and 1,599 had normal mucosa available for statistical analysis. Agilent Human miRNA Microarray V.19.0 was used to generate miRNA expression profiles; validation of expression levels was carried out using quantitative PCR. We used random forest analysis and verified findings with logistic modeling in separate data sets. Important microRNAs are identified and bioinformatics tools are used to identify target genes and related biological pathways.RESULTS:We identified 16 miRNAs for colon and 17 miRNAs for rectal carcinoma that appear to differentiate between carcinoma and normal mucosa; of these, 12 were important for both colon and rectal cancer, hsa-miR-663b, hsa-miR-4539, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-21-5p, hsa-miR-4506, hsa-miR-92a-3p, hsa-miR-93-5p, hsa-miR-145-5p, hsa-miR-3651, hsa-miR-378a-3p, and hsa-miR-378i. Estimated misclassification rates were low at 4.83% and 2.5% among colon and rectal observations, respectively. Among independent observations, logistic modeling reinforced the importance of these miRNAs, finding the primary principal components of their variation statistically significant (P<0.001 among both colon and rectal observations) and again producing low misclassification rates. Repeating our analysis without those miRNAs initially identified as important identified other important miRNAs; however, misclassification rates increased and distinctions between remaining miRNAs in terms of classification importance were reduced.CONCLUSIONS:Our data support the hypothesis that while many miRNAs are dysregulated between carcinoma and normal mucosa, smaller subsets of these miRNAs are useful and informative in discriminating between these tissues.


Genes, Chromosomes and Cancer | 2015

Gene expression in colon cancer: A focus on tumor site and molecular phenotype

Martha L. Slattery; Daniel F. Pellatt; Lila E. Mullany; Roger K. Wolff; Jennifer S. Herrick

Hundreds to thousands of genes are differentially expressed in tumors when compared to nontumor colonic tissue samples. We evaluated gene expression patterns to better understand differences in colon cancer by tumor site and tumor molecular phenotype. We analyzed RNA‐seq data from tumor/normal paired samples from 175 colon cancer patients. We implemented a cross validation strategy with nonparametric tests to identify genes which displayed varying expression characteristics related to paired tumor/nontumor tissue across proximal and distal colon sites and by tumor molecular phenotypes, that is, TP53, KRAS, CpG Island Methylator Phenotype (CIMP), and microsatellite instability (MSI). We used Ingenuity Pathway Analysis (IPA) to determine networks associated with deregulated genes in our data. Genes showed significant differences in expression characteristics at the 0.01 level in both validation groups between tumor subsite (116 genes), CIMP high versus CIMP low (79 genes), MSI versus microsatellite stable (MSS) (49 genes), TP53‐mutated versus not mutated (17genes), and KRAS‐mutated versus not mutated (1 gene). Deregulated genes for CIMP high and MSI tumors were often down‐regulated. In contrast to CIMP high and MSI tumors, genes that were deregulated in TP53 were likely to be up‐regulated. ERK1, WNT, growth factors and inflammation‐related factors were focal points of both CIMP and MSI IPA networks. The MUC family of genes was up‐regulated MSI networks. Numerous genes showed differences in expression between proximal and distal tumors, nontumor proximal and distal tissue, and tumor molecular phenotype. Deregulated mucin genes appear to play an important role in MSI tumors.


PLOS ONE | 2016

MicroRNA Seed Region Length Impact on Target Messenger RNA Expression and Survival in Colorectal Cancer

Lila E. Mullany; Jennifer S. Herrick; Roger K. Wolff; Martha L. Slattery

microRNAs (miRNA) repress messenger RNAs post-transcriptionally through binding to the 3’ UTR of the mRNA with the miRNA seed region. It has been purported that longer seed regions have a greater efficacy on mRNA repression. We tested this hypothesis by evaluating differential expression of miRNAs involved in regulating the immune response, an important mechanism in colorectal cancer (CRC), by seed length category. We subsequently evaluated differential expression of these miRNAs’ targets in colonic tissue and the impact of these miRNAs on CRC survival. We determined sequence complementarity between each miRNA seed region and the 3’ UTR of each experimentally verified mRNA target gene. We classified miRNAs into groups based on seed regions matching perfectly to a mRNA UTR with six bases beginning at position two, seven bases beginning at position one, seven bases beginning at position two, or eight bases beginning at position one. We analyzed these groups in terms of miRNA differential expression between carcinoma and normal colorectal mucosa, differential colonic target mRNA expression, and risk of dying from CRC. After correction for multiple comparisons, the proportion of the miRNAs that were associated with differential mRNA expression was 0% for the 6-mer, 13.64% for the 7α-mer group, 12.82% for the 7β-mer group, and 8.70% for the 8-mer group. The proportion of miRNAs associated with survival was 20% for the 6-mer group, 27.27% for the 7α-mer group, 10.23% for the 7β-mer group, and 21.74% for the 8-mer group. We did not see a linear relationship between seed length and miRNA expression dysregulation, mRNA expression, or survival. Our findings do not support the hypothesis the seed region length alone influences mRNA repression.


Oncotarget | 2016

Site-specific associations between miRNA expression and survival in colorectal cancer cases

Martha L. Slattery; Jennifer S. Herrick; Daniel F. Pellatt; Lila E. Mullany; John R. Stevens; Erica Wolff; Michael Hoffman; Roger K. Wolff; Wade S. Samowitz

Background MicroRNAs (miRNA) are small non-coding RNA involved in cellular processes, including cell proliferation and angiogenesis. Thus, miRNA expression may alter survival after diagnosis with colorectal cancer (CRC). Results Individuals diagnosed with stage 1 or stage 2 rectal cancer had worse survival than colon cancer cases diagnosed at stage 1 or stage 2. After adjustment for multiple comparisons, no miRNAs were significantly associated with disease stage. Two miRNAs infrequently expressed in the population and not previously reported were associated with survival after diagnosis with colon cancer (miR-1 HR 2.17 95% CI 1.41, 3.36; and miR-101-3p HR 3.51 95% CI 1.72, 7.15). Among those diagnosed with rectal cancer, 201 miRNAs were associated with survival when the FDR q value was < 0.05. Assessment of 105 previously reported miRNAs associated with prognosis showed that four miRNAs influenced colon cancer survival and 17 influenced survival after a diagnosis with rectal cancer when raw p values were considered. Patients and Methods This study includes data from population-based studies of CRC conducted in Utah and the Kaiser Permanente Medical Care Program. A total of 1893 carcinoma and normal paired colorectal mucosa tissue samples were run using the Agilent Human miRNA Microarray V19.0. We assessed miRNA differential expression between paired carcinoma and normal colonic mucosa tissue with CRC- specific survival evaluating stage and site-specific associations after adjusting for age, sex, microsatellite instability tumor status, and AJCC stage. Conclusions MiRNAs dysregulated for both colon and rectal cancer had a greater impact on survival after a diagnosis with rectal cancer.


BMC Medicine | 2015

Improved survival among colon cancer patients with increased differentially expressed pathways

Martha L. Slattery; Jennifer S. Herrick; Lila E. Mullany; Jason Gertz; Roger K. Wolff

BackgroundStudies of colorectal cancer (CRC) have shown that hundreds to thousands of genes are differentially expressed in tumors when compared to normal tissue samples. In this study, we evaluate how genes that are differentially expressed in colon versus normal tissue influence survival.MethodsWe performed RNA-seq on tumor/normal paired samples from 175 colon cancer patients. We implemented a cross validation strategy to determine genes that were significantly differentially expressed between tumor and normal samples. Differentially expressed genes were evaluated with Ingenuity Pathway Analysis to identify key pathways that were de-regulated. A summary differential pathway expression score (DPES) was developed to summarize hazard of dying while adjusting for age, American Joint Committee on Cancer (AJCC) stage, sex, and tumor molecular phenotype, i.e., MSI, TP53, KRAS, and CIMP.ResultsA total of 1,138 genes were up-regulated and 695 were down-regulated. These de-regulated genes were enriched for 19 Ingenuity Canonical Pathways, with the most significant pathways involving cell signaling and growth. Of the enriched pathways, 16 were significantly associated with CRC-specific mortality, including 1 metabolic pathway and 15 signaling pathways. In all instances, having a higher DPES (i.e., more de-regulated genes) was associated with better survival. Further assessment showed that individuals diagnosed at AJCC Stage 1 had more de-regulated genes than individuals diagnosed at AJCC Stage 4.ConclusionsOur data suggest that having more de-regulated pathways is associated with a good prognosis and may be a reaction to key events that are disabling to tumor progression.Please see related article: http://dx.doi.org/10.1186/s12916-015-0307-6.


Pharmacogenetics and Genomics | 2016

Dietary intake alters gene expression in colon tissue: possible underlying mechanism for the influence of diet on disease.

Andrew J. Pellatt; Martha L. Slattery; Lila E. Mullany; Roger K. Wolff; Daniel F. Pellatt

Background Although the association between diet and disease is well documented, the biologic mechanisms involved have not been entirely elucidated. In this study, we evaluate how dietary intake influences gene expression to better understand the underlying mechanisms through which diet operates. Methods We used data from 144 individuals who had comprehensive dietary intake and gene expression data from RNAseq using normal colonic mucosa. Using the DESeq2 statistical package, we identified genes that showed statistically significant differences in expression between individuals in high-intake and low-intake categories for several dietary variables of interest adjusting for age and sex. We examined total calories, total fats, vegetable protein, animal protein, carbohydrates, trans-fatty acids, mutagen index, red meat, processed meat, whole grains, vegetables, fruits, fiber, folate, dairy products, calcium, and prudent and western dietary patterns. Results Using a false discovery rate of less than 0.1, meat-related foods were statistically associated with 68 dysregulated genes, calcium with three dysregulated genes, folate with four dysregulated genes, and nonmeat-related foods with 65 dysregulated genes. With a more stringent false discovery rate of less than 0.05, there were nine meat-related dysregulated genes and 23 nonmeat-related genes. Ingenuity pathway analysis identified three major networks among genes identified as dysregulated with respect to meat-related dietary variables and three networks among genes identified as dysregulated with respect to nonmeat-related variables. The top networks (Ingenuity Pathway Analysis network score >30) associated with meat-related genes were (i) cancer, organismal injury, and abnormalities, tumor morphology, and (ii) cellular function and maintenance, cellular movement, cell death, and survival. Among genes related to nonmeat consumption variables, the top networks were (i) hematological system development and function, nervous system development and function, tissue morphology and (ii) connective tissue disorders, organismal injury, and abnormalities. Conclusion Several dietary factors were associated with gene expression in our data. These findings provide insight into the possible mechanisms by which diet may influence disease processes.


Modern Pathology | 2016

Colorectal tumor molecular phenotype and miRNA: expression profiles and prognosis

Martha L. Slattery; Jennifer S. Herrick; Lila E. Mullany; Erica Wolff; Michael Hoffman; Daniel F. Pellatt; John R. Stevens; Roger K. Wolff

MiRNAs regulate gene expression by post-transcriptionally suppressing mRNA translation or by causing mRNA degradation. It has been proposed that unique miRNAs influence specific tumor molecular phenotype. In this paper, we test the hypotheses that miRNA expression differs by tumor molecular phenotype and that those differences may influence prognosis. Data come from population-based studies of colorectal cancer conducted in Utah and the Northern California Kaiser Permanente Medical Care Program. A total of 1893 carcinoma samples were run on the Agilent Human miRNA Microarray V19.0 containing 2006 miRNAs. We assessed differences in miRNA expression between TP53-mutated and non-mutated, KRAS-mutated and non-mutated, BRAF-mutated and non-mutated, CpG island methylator phenotype (CIMP) high and CIMP low, and microsatellite instability (MSI) and microsatellite stable (MSS) colon and rectal tumors. Using a Cox proportional hazard model we evaluated if those miRNAs differentially expressed by tumor phenotype influenced survival after adjusting for age, sex, and AJCC stage. There were 22 differentially expressed miRNAs for TP53-mutated colon tumors and 5 for TP53-mutated rectal tumors with a fold change of >1.49 (or <0.67). Additionally, 13 miRNAS were differentially expressed for KRAS-mutated rectal tumors, 8 differentially expressed miRNAs for colon CIMP high tumors, and 2 differentially expressed miRNAs for BRAF-mutated colon tumors. The majority of differentially expressed miRNAS were observed between MSI and MSS tumors (94 differentially expressed miRNAs for colon; 41 differentially expressed miRNAs for rectal tumors). Of these miRNAs differentially expressed between MSI and MSS tumors, the majority were downregulated. Ten of the differentially expressed miRNAs were associated with survival; after adjustment for MSI status, five miRNAS, miR-196b-5p, miR-31-5p, miR-99b-5p, miR-636, and miR-192-3p, were significantly associated with survival. In summary, it appears that the majority of miRNAs that are differentially expressed by tumor molecular phenotype are MSI tumors. However, these miRNAs appear to have minimal effect on prognosis.


Genes, Chromosomes and Cancer | 2017

The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer

Martha L. Slattery; Jennifer S. Herrick; Lila E. Mullany; Wade S. Samowitz; John R. Sevens; Lori C. Sakoda; Roger K. Wolff

Tumor suppressor genes (TSGs) and oncogenes (OG) are involved in carcinogenesis. MiRNAs also contribute to cellular pathways leading to cancer. We use data from 217 colorectal cancer (CRC) cases to evaluate differences in TSGs and OGs expression between paired CRC and normal mucosa and evaluate how TSGs and OGs are associated with miRNAs. Gene expression data from RNA‐Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were used. We focus on genes most strongly associated with CRC (fold change (FC) of ≥1.5 or ≤0.67) that were statistically significant after adjustment for multiple comparisons. Of the 74 TSGs evaluated, 22 were associated with carcinoma/normal mucosa differential expression. Ten TSGs were up‐regulated (FAM123B, RB1, TP53, RUNX1, MSH2, BRCA1, BRCA2, SOX9, NPM1, and RNF43); six TSGs were down‐regulated (PAX5, IZKF1, GATA3, PRDM1, TET2, and CYLD); four were associated with MSI tumors (MLH1, PTCH1, and CEBPA down‐regulated and MSH6 up‐regulated); and two were associated with MSS tumors (PHF6 and ASXL1 up‐regulated). Thirteen of these TSGs were associated with 44 miRNAs. Twenty‐seven of the 59 OGs evaluated were dysregulated: 14 down‐regulated (KLF4, BCL2, SSETBP1, FGFR2, TSHR, MPL, KIT, PDGFRA, GNA11, GATA2, FGFR3, AR, CSF1R, and JAK3), seven up‐regulated (DNMT1, EZH2, PTPN11, SKP2, CCND1, MET, and MYC); three down‐regulated for MSI (FLT3, CARD11, and ALK); two up‐regulated for MSI (IDH2 and HRAS); and one up‐regulated with MSS tumors (CTNNB1). These findings suggest possible co‐regulatory function between TSGs, OGs, and miRNAs, involving both direct and indirect associations that operate through feedback and feedforward loops.

Collaboration


Dive into the Lila E. Mullany's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge