Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lila Ghamsari is active.

Publication


Featured researches published by Lila Ghamsari.


Science | 2011

Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network

M. Shahid Mukhtar; Anne-Ruxandra Carvunis; Matija Dreze; Petra Epple; Jens Steinbrenner; Jonathan D. Moore; Murat Tasan; Mary Galli; Tong Hao; Marc T. Nishimura; Samuel J. Pevzner; Susan E. Donovan; Lila Ghamsari; Balaji Santhanam; Viviana Romero; Matthew M. Poulin; Fana Gebreab; Bryan J. Gutierrez; Stanley Tam; Dario Monachello; Mike Boxem; Christopher J. Harbort; Nathan A. McDonald; Lantian Gai; Huaming Chen; Yijian He; Jean Vandenhaute; Frederick P. Roth; David E. Hill; Joseph R. Ecker

An analysis of protein-protein interactions in Arabidopsis identifies the plant interactome. Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.


Nature Methods | 2011

A public genome-scale lentiviral expression library of human ORFs

Xiaoping Yang; Jesse S. Boehm; Xinping Yang; Kourosh Salehi-Ashtiani; Tong Hao; Yun Shen; Rakela Lubonja; Sapana Thomas; Ozan Alkan; Tashfeen Bhimdi; Thomas M. Green; Cory M. Johannessen; Serena J. Silver; Cindy Nguyen; Ryan R. Murray; Haley Hieronymus; Dawit Balcha; Changyu Fan; Chenwei Lin; Lila Ghamsari; Marc Vidal; William C. Hahn; David E. Hill; David E. Root

Functional characterization of the human genome requires tools for systematically modulating gene expression in both loss-of-function and gain-of-function experiments. We describe the production of a sequence-confirmed, clonal collection of over 16,100 human open-reading frames (ORFs) encoded in a versatile Gateway vector system. Using this ORFeome resource, we created a genome-scale expression collection in a lentiviral vector, thereby enabling both targeted experiments and high-throughput screens in diverse cell types.


Molecular Systems Biology | 2014

Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism

Roger L. Chang; Lila Ghamsari; Ani Manichaikul; Erik F. Y. Hom; Santhanam Balaji; Weiqi Fu; Yun Shen; Tong Hao; Bernhard O. Palsson; Kourosh Salehi-Ashtiani; Jason A. Papin

Metabolic network reconstruction encompasses existing knowledge about an organisms metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome‐scale metabolic network for this alga and devised a novel light‐modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light‐driven metabolism and quantitative systems biology.


PLOS ONE | 2012

Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

Sarah Djebali; Julien Lagarde; Philipp Kapranov; Vincent Lacroix; Christelle Borel; Jonathan M. Mudge; Cédric Howald; Sylvain Foissac; Catherine Ucla; Jacqueline Chrast; Paolo Ribeca; David Martin; Ryan R. Murray; Xinping Yang; Lila Ghamsari; Chenwei Lin; Ian Bell; Erica Dumais; Jorg Drenkow; Michael L. Tress; Josep Lluís Gelpí; Modesto Orozco; Alfonso Valencia; Nynke L. van Berkum; Bryan R. Lajoie; Marc Vidal; John A. Stamatoyannopoulos; Philippe Batut; Alexander Dobin; Jennifer Harrow

The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.


Nature Methods | 2009

Metabolic network analysis integrated with transcript verification for sequenced genomes

Ani Manichaikul; Lila Ghamsari; Erik F. Y. Hom; Chenwei Lin; Ryan R. Murray; Roger L. Chang; Santhanam Balaji; Tong Hao; Yun Shen; Arvind K. Chavali; Ines Thiele; Xinping Yang; Changyu Fan; Elizabeth Mello; David E. Hill; Marc Vidal; Kourosh Salehi-Ashtiani; Jason A. Papin

With sequencing of thousands of organisms completed or in progress, there is a growing need to integrate gene prediction with metabolic network analysis. Using Chlamydomonas reinhardtii as a model, we describe a systems-level methodology bridging metabolic network reconstruction with experimental verification of enzyme encoding open reading frames. Our quantitative and predictive metabolic model and its associated cloned open reading frames provide useful resources for metabolic engineering.


Nature Communications | 2014

Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism.

Roser Corominas; Xinping Yang; Guan Ning Lin; Shuli Kang; Yun Shen; Lila Ghamsari; Martin P. Broly; Maria J. Rodriguez; Stanley Tam; Shelly A. Trigg; Changyu Fan; Song Yi; Murat Tasan; Irma Lemmens; Xingyan Kuang; Nan Zhao; Dheeraj Malhotra; Jacob J. Michaelson; Vladimir Vacic; Michael A. Calderwood; Frederick P. Roth; Jan Tavernier; Steve Horvath; Kourosh Salehi-Ashtiani; Dmitry Korkin; Jonathan Sebat; David E. Hill; Tong Hao; Marc Vidal; Lilia M. Iakoucheva

Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.


BMC Genomics | 2011

Genome-wide functional annotation and structural verification of metabolic ORFeome of Chlamydomonas reinhardtii

Lila Ghamsari; Santhanam Balaji; Yun Shen; Xinping Yang; Dawit Balcha; Changyu Fan; Tong Hao; Haiyuan Yu; Jason A. Papin; Kourosh Salehi-Ashtiani

BackgroundRecent advances in the field of metabolic engineering have been expedited by the availability of genome sequences and metabolic modelling approaches. The complete sequencing of the C. reinhardtii genome has made this unicellular alga a good candidate for metabolic engineering studies; however, the annotation of the relevant genes has not been validated and the much-needed metabolic ORFeome is currently unavailable. We describe our efforts on the functional annotation of the ORF models released by the Joint Genome Institute (JGI), prediction of their subcellular localizations, and experimental verification of their structural annotation at the genome scale.ResultsWe assigned enzymatic functions to the translated JGI ORF models of C. reinhardtii by reciprocal BLAST searches of the putative proteome against the UniProt and AraCyc enzyme databases. The best match for each translated ORF was identified and the EC numbers were transferred onto the ORF models. Enzymatic functional assignment was extended to the paralogs of the ORFs by clustering ORFs using BLASTCLUST.In total, we assigned 911 enzymatic functions, including 886 EC numbers, to 1,427 transcripts. We further annotated the enzymatic ORFs by prediction of their subcellular localization. The majority of the ORFs are predicted to be compartmentalized in the cytosol and chloroplast. We verified the structure of the metabolism-related ORF models by reverse transcription-PCR of the functionally annotated ORFs. Following amplification and cloning, we carried out 454FLX and Sanger sequencing of the ORFs. Based on alignment of the 454FLX reads to the ORF predicted sequences, we obtained more than 90% coverage for more than 80% of the ORFs. In total, 1,087 ORF models were verified by 454 and Sanger sequencing methods. We obtained expression evidence for 98% of the metabolic ORFs in the algal cells grown under constant light in the presence of acetate.ConclusionsWe functionally annotated approximately 1,400 JGI predicted metabolic ORFs that can facilitate the reconstruction and refinement of a genome-scale metabolic network. The unveiling of the metabolic potential of this organism, along with structural verification of the relevant ORFs, facilitates the selection of metabolic engineering targets with applications in bioenergy and biopharmaceuticals. The ORF clones are a resource for downstream studies.


Molecular Systems Biology | 2016

An inter-species protein-protein interaction network across vast evolutionary distance.

Quan Zhong; Samuel J. Pevzner; Tong Hao; Yang Wang; Roberto Mosca; Jörg Menche; Mikko Taipale; Murat Tasan; Changyu Fan; Xinping Yang; Patrick J. Haley; Ryan R. Murray; Flora Mer; Fana Gebreab; Stanley Tam; Andrew MacWilliams; Amélie Dricot; Patrick Reichert; Balaji Santhanam; Lila Ghamsari; Michael A. Calderwood; Thomas Rolland; Benoit Charloteaux; Susan Lindquist; Albert-László Barabási; David E. Hill; Patrick Aloy; Michael E. Cusick; Yu Xia; Frederick P. Roth

In cellular systems, biophysical interactions between macromolecules underlie a complex web of functional interactions. How biophysical and functional networks are coordinated, whether all biophysical interactions correspond to functional interactions, and how such biophysical‐versus‐functional network coordination is shaped by evolutionary forces are all largely unanswered questions. Here, we investigate these questions using an “inter‐interactome” approach. We systematically probed the yeast and human proteomes for interactions between proteins from these two species and functionally characterized the resulting inter‐interactome network. After a billion years of evolutionary divergence, the yeast and human proteomes are still capable of forming a biophysical network with properties that resemble those of intra‐species networks. Although substantially reduced relative to intra‐species networks, the levels of functional overlap in the yeast–human inter‐interactome network uncover significant remnants of co‐functionality widely preserved in the two proteomes beyond human–yeast homologs. Our data support evolutionary selection against biophysical interactions between proteins with little or no co‐functionality. Such non‐functional interactions, however, represent a reservoir from which nascent functional interactions may arise.


Genome Research | 2009

Large-scale RACE approach for proactive experimental definition of C. elegans ORFeome

Kourosh Salehi-Ashtiani; Chenwei Lin; Tong Hao; Yun Shen; David Szeto; Xinping Yang; Lila Ghamsari; HanJoo Lee; Changyu Fan; Ryan R. Murray; Nenad Svrzikapa; Michael E. Cusick; Frederick P. Roth; David E. Hill; Marc Vidal

Although a highly accurate sequence of the Caenorhabditis elegans genome has been available for 10 years, the exact transcript structures of many of its protein-coding genes remain unsettled. Approximately two-thirds of the ORFeome has been verified reactively by amplifying and cloning computationally predicted transcript models; still a full third of the ORFeome remains experimentally unverified. To fully identify the protein-coding potential of the worm genome including transcripts that may not satisfy existing heuristics for gene prediction, we developed a computational and experimental platform adapting rapid amplification of cDNA ends (RACE) for large-scale structural transcript annotation. We interrogated 2000 unverified protein-coding genes using this platform. We obtained RACE data for approximately two-thirds of the examined transcripts and reconstructed ORF and transcript models for close to 1000 of these. We defined untranslated regions, identified new exons, and redefined previously annotated exons. Our results show that as much as 20% of the C. elegans genome may be incorrectly annotated. Many annotation errors could be corrected proactively with our large-scale RACE platform.


PLOS ONE | 2016

A High-Throughput Strategy for Dissecting Mammalian Genetic Interactions

Victoria B. Stockman; Lila Ghamsari; Gorka Lasso Cabrera; Barry Honig; Sagi D. Shapira; Harris H. Wang

Comprehensive delineation of complex cellular networks requires high-throughput interrogation of genetic interactions. To address this challenge, we describe the development of a multiplex combinatorial strategy to assess pairwise genetic interactions using CRISPR-Cas9 genome editing and next-generation sequencing. We characterize the performance of combinatorial genome editing and analysis using different promoter and gRNA designs and identified regions of the chimeric RNA that are compatible with next-generation sequencing preparation and quantification. This approach is an important step towards elucidating genetic networks relevant to human diseases and the development of more efficient Cas9-based therapeutics.

Collaboration


Dive into the Lila Ghamsari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge