Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lilach Pnueli is active.

Publication


Featured researches published by Lilach Pnueli.


Molecular and Cellular Biology | 2010

Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner.

Erez Eliyahu; Lilach Pnueli; Daniel Melamed; Tanja Scherrer; André P. Gerber; Ophry Pines; Doron Rapaport; Yoav Arava

ABSTRACT mRNAs encoding mitochondrial proteins are enriched in the vicinity of mitochondria, presumably to facilitate protein transport. A possible mechanism for enrichment may involve interaction of the translocase of the mitochondrial outer membrane (TOM) complex with the precursor protein while it is translated, thereby leading to association of polysomal mRNAs with mitochondria. To test this hypothesis, we isolated mitochondrial fractions from yeast cells lacking the major import receptor, Tom20, and compared their mRNA repertoire to that of wild-type cells by DNA microarrays. Most mRNAs encoding mitochondrial proteins were less associated with mitochondria, yet the extent of decrease varied among genes. Analysis of several mRNAs revealed that optimal association of Tom20 target mRNAs requires both translating ribosomes and features within the encoded mitochondrial targeting signal. Recently, Puf3p was implicated in the association of mRNAs with mitochondria through interaction with untranslated regions. We therefore constructed a tom20Δ puf3Δ double-knockout strain, which demonstrated growth defects under conditions where fully functional mitochondria are required. Mislocalization effects for few tested mRNAs appeared stronger in the double knockout than in the tom20Δ strain. Taken together, our data reveal a large-scale mRNA association mode that involves interaction of Tom20p with the translated mitochondrial targeting sequence and may be assisted by Puf3p.


RNA | 2008

Yeast translational response to high salinity: Global analysis reveals regulation at multiple levels

Daniel Melamed; Lilach Pnueli; Yoav Arava

Genome-wide studies of steady-state mRNA levels revealed common principles underlying transcriptional changes in response to external stimuli. To uncover principles that govern other stages of the gene-expression response, we analyzed the translational response and its coordination with transcriptome changes following exposure to severe stress. Yeast cells were grown for 1 h in medium containing 1 M NaCl, which elicits a maximal but transient translation inhibition, and nonpolysomal or polysomal mRNA pools were subjected to DNA-microarray analyses. We observed a strong repression in polysomal association for most mRNAs, with no simple correlation with the changes in transcript levels. This led to an apparent accumulation of many mRNAs as a nontranslating pool, presumably waiting for recovery from the stress. However, some mRNAs demonstrated a correlated change in their polysomal association and their transcript levels (i.e., potentiation). This group was enriched with targets of the transcription factors Msn2/Msn4, and the translational induction of several tested mRNAs was diminished in an Msn2/Msn4 deletion strain. Genome-wide analysis of a strain lacking the high salinity response kinase Hog1p revealed that the group of translationally affected genes is significantly enriched with motifs that were shown to be associated with the ARE-binding protein Pub1. Since a relatively small number of genes was affected by Hog1p deletion, additional signaling pathways are likely to be involved in coordinating the translational response to severe salinity stress.


PLOS ONE | 2009

Negative Feedback Governs Gonadotrope Frequency-Decoding of Gonadotropin Releasing Hormone Pulse-Frequency

Stefan Lim; Lilach Pnueli; Jing Hui Tan; Zvi Naor; Gunaretnam Rajagopal; Philippa Melamed

The synthesis of the gonadotropin subunits is directed by pulsatile gonadotropin-releasing hormone (GnRH) from the hypothalamus, with the frequency of GnRH pulses governing the differential expression of the common α-subunit, luteinizing hormone β-subunit (LHβ) and follicle-stimulating hormone β-subunit (FSHβ). Three mitogen-activated protein kinases, (MAPKs), ERK1/2, JNK and p38, contribute uniquely and combinatorially to the expression of each of these subunit genes. In this study, using both experimental and computational methods, we found that dual specificity phosphatase regulation of the activity of the three MAPKs through negative feedback is required, and forms the basis for decoding the frequency of pulsatile GnRH. A fourth MAPK, ERK5, was shown also to be activated by GnRH. ERK5 was found to stimulate FSHβ promoter activity and to increase FSHβ mRNA levels, as well as enhancing its preference for low GnRH pulse frequencies. The latter is achieved through boosting the ultrasensitive behavior of FSHβ gene expression by increasing the number of MAPK dependencies, and through modulating the feedforward effects of JNK activation on the GnRH receptor (GnRH-R). Our findings contribute to understanding the role of changing GnRH pulse-frequency in controlling transcription of the pituitary gonadotropins, which comprises a crucial aspect in regulating reproduction. Pulsatile stimuli and oscillating signals are integral to many biological processes, and elucidation of the mechanisms through which the pulsatility is decoded explains how the same stimulant can lead to various outcomes in a single cell.


Molecular and Cellular Biology | 2004

Glucose and Nitrogen Regulate the Switch from Histone Deacetylation to Acetylation for Expression of Early Meiosis-Specific Genes in Budding Yeast

Lilach Pnueli; Iris Edry; T. Miriam Cohen; Yona Kassir

ABSTRACT In eukaryotes, the switch between alternative developmental pathways is mainly attributed to a switch in transcriptional programs. A major mode in this switch is the transition between histone deacetylation and acetylation. In budding yeast, early meiosis-specific genes (EMGs) are repressed in the mitotic cell cycle by active deacetylation of their histones. Transcriptional activation of these genes in response to the meiotic signals (i.e., glucose and nitrogen depletion) requires histone acetylation. Here we follow how this regulated switch is accomplished, demonstrating the existence of two parallel mechanisms. (i) We demonstrate that depletion of glucose and nitrogen leads to a transient replacement of the histone deacetylase (HDAC) complex on the promoters of EMG by the transcriptional activator Ime1. The occupancy by either component occurs independently of the presence or absence of the other. Removal of the HDAC complex depends on the protein kinase Rim15, whose activity in the presence of nutrients is inhibited by protein kinase A phosphorylation. (ii) In the absence of glucose, HDAC loses its ability to repress transcription, even if this repression complex is directly bound to a promoter. We show that this relief of repression depends on Ime1, as well as on the kinase activity of Rim11, a glycogen synthase kinase 3β homolog that phosphorylates Ime1. We further show that the glucose signal is transmitted through Rim11. In cells expressing the constitutive active rim11-3SA allele, HDAC repression in glucose medium is impaired.


Molecular and Cellular Biology | 2004

The In Vivo Activity of Ime1, the Key Transcriptional Activator of Meiosis-Specific Genes in Saccharomyces cerevisiae, Is Inhibited by the Cyclic AMP/Protein Kinase A Signal Pathway through the Glycogen Synthase Kinase 3-β Homolog Rim11

Ifat Rubin-Bejerano; Shira Sagee; Osnat Friedman; Lilach Pnueli; Yona Kassir

ABSTRACT Phosphorylation is the main mode by which signals are transmitted to key regulators of developmental pathways. The glycogen synthase kinase 3 family plays pivotal roles in the development and well-being of all eukaryotic organisms. Similarly, the budding yeast homolog Rim11 is essential for the exit of diploid cells from the cell cycle and for entry into the meiotic developmental pathway. In this report we show that in vivo, in cells grown in a medium promoting vegetative growth with acetate as the sole carbon source (SA medium), Rim11 phosphorylates Ime1, the master transcriptional activator required for entry into the meiotic cycle and for the transcription of early meiosis-specific genes. We demonstrate that in the presence of glucose, the kinase activity of Rim11 is inhibited. This inhibition could be due to phosphorylation on Ser-5, Ser-8, and/or Ser-12 because in the rim11S5AS8AS12A mutant, Ime1 is incorrectly phosphorylated in the presence of glucose and cells undergo sporulation. We further show that this nutrient signal is transmitted to Rim11 and consequently to Ime1 by the cyclic AMP/protein kinase A signal transduction pathway. Ime1 is phosphorylated in SA medium on at least two residues, Tyr-359 and Ser-302 and/or Ser-306. Ser-302 and Ser-306 are part of a consensus site for the mammalian homolog of Rim11, glycogen synthase kinase 3-β. Phosphorylation on Tyr-359 but not Ser-302 or Ser-306 is essential for the transcription of early meiosis-specific genes and sporulation. We show that Tyr-359 is phosphorylated by Rim11.


Proceedings of the National Academy of Sciences of the United States of America | 2015

RNA transcribed from a distal enhancer is required for activating the chromatin at the promoter of the gonadotropin α-subunit gene

Lilach Pnueli; Sergei Rudnizky; Yahav Yosefzon; Philippa Melamed

Significance Much of the mammalian genome recently was shown to be transcribed to long noncoding RNAs, one class of which is the enhancer RNAs (eRNAs) whose levels largely correlate with the mRNA levels of the target gene but whose functions are not yet clear. We examined the eRNA produced from a functional enhancer that directs cell-specific expression of the gonadotropin hormone α-subunit gene, chorionic gonadotropin alpha, in the pituitary. We show that this eRNA plays a crucial role in facilitating DNA looping between the enhancer and promoter and directs histone modifications that are essential for transcription initiation and without which the chromatin becomes repressive to transcription. In this way, the eRNA mediates the function of the enhancer in directing basal gene expression. Since the discovery that many transcriptional enhancers are transcribed into long noncoding RNAs termed “enhancer RNAs” (eRNAs), their putative role in enhancer function has been debated. Very recent evidence has indicted that some eRNAs play a role in initiating or activating transcription, possibly by helping recruit and/or stabilize binding of the general transcription machinery to the proximal promoter of their target genes. The distal enhancer of the gonadotropin hormone α-subunit gene, chorionic gonadotropin alpha (Cga), is responsible for Cga cell-specific expression in gonadotropes and thyrotropes, and we show here that it encodes two bidirectional nonpolyadenylated RNAs whose levels are increased somewhat by exposure to gonadotropin-releasing hormone but are not necessarily linked to Cga transcriptional activity. Knockdown of the more distal eRNA led to a drop in Cga mRNA levels, initially without effect on the forward eRNA levels. With time, however, the repression on the Cga increased, and the forward eRNA levels were suppressed also. We demonstrate that the interaction of the enhancer with the promoter is lost after eRNA knockdown. Dramatic changes also were seen in the chromatin, with an increase in total histone H3 occupancy throughout this region and a virtual loss of histone H3 Lys 4 trimethylation at the promoter following the eRNA knockdown. Moreover, histone H3 Lys 27 (H3K27) acetylation, which was found at both enhancer and promoter in wild-type cells, appeared to have been replaced by H3K27 trimethylation at the enhancer. Thus, the Cga eRNA mediates the physical interaction between these genomic regions and determines the chromatin structure of the proximal promoter to allow gene expression.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Faithful modeling of transient expression and its application to elucidating negative feedback regulation

Amir Rubinstein; Vyacheslav Gurevich; Zohar Kasulin-Boneh; Lilach Pnueli; Yona Kassir; Ron Y. Pinter

Modeling and analysis of genetic regulatory networks is essential both for better understanding their dynamic behavior and for elucidating and refining open issues. We hereby present a discrete computational model that effectively describes the transient and sequential expression of a network of genes in a representative developmental pathway. Our model system is a transcriptional cascade that includes positive and negative feedback loops directing the initiation and progression through meiosis in budding yeast. The computational model allows qualitative analysis of the transcription of early meiosis-specific genes, specifically, Ime2 and their master activator, Ime1. The simulations demonstrate a robust transcriptional behavior with respect to the initial levels of Ime1 and Ime2. The computational results were verified experimentally by deleting various genes and by changing initial conditions. The model has a strong predictive aspect, and it provides insights into how to distinguish among and reason about alternative hypotheses concerning the mode by which negative regulation through Ime1 and Ime2 is accomplished. Some predictions were validated experimentally, for instance, showing that the decline in the transcription of IME1 depends on Rpd3, which is recruited by Ime1 to its promoter. Finally, this general model promotes the analysis of systems that are devoid of consistent quantitative data, as is often the case, and it can be easily adapted to other developmental pathways.


Microscopy and Microanalysis | 2011

SpRET: highly sensitive and reliable spectral measurement of absolute FRET efficiency.

Shiri Levy; Christian Wilms; Eliaz Brumer; Joy Kahn; Lilach Pnueli; Yoav Arava; Jens Eilers; Daniel Gitler

Contemporary research aims to understand biological processes not only by identifying participating proteins, but also by characterizing the dynamics of their interactions. Because Försters Resonance Energy Transfer (FRET) is invaluable for the latter undertaking, its usage is steadily increasing. However, FRET measurements are notoriously error-prone, especially when its inherent efficiency is low, a not uncommon situation. Furthermore, many FRET methods are either difficult to implement, are not appropriate for observation of cellular dynamics, or report instrument-specific indices that hamper communication of results within the scientific community. We present here a novel comprehensive spectral methodology, SpRET, which substantially increases both the reliability and sensitivity of FRET microscopy, even under unfavorable conditions such as weak fluorescence or the presence of noise. While SpRET overcomes common pitfalls such as interchannel crosstalk and direct excitation of the acceptor, it also excels in removal of autofluorescence or background contaminations and in correcting chromatic aberrations, often overlooked factors that severely undermine FRET experiments. Finally, SpRET quantitatively reports absolute rather than relative FRET efficiency values, as well as the acceptor-to-donor molar ratio, which is critical for full and proper interpretation of FRET experiments. Thus, SpRET serves as an advanced, improved, and powerful tool in the cell biologists toolbox.


Genetics | 2010

Functional dissection of IME1 transcription using quantitative promoter-reporter screening.

Smadar Kahana; Lilach Pnueli; Pinay Kainth; Holly E. Sassi; Brenda Andrews; Yona Kassir

Transcriptional regulation is a key mechanism that controls the fate and response of cells to diverse signals. Therefore, the identification of the DNA-binding proteins, which mediate these signals, is a crucial step in elucidating how cell fate is regulated. In this report, we applied both bioinformatics and functional genomic approaches to scrutinize the unusually large promoter of the IME1 gene in budding yeast. Using a recently described fluorescent protein-based reporter screen, reporter-synthetic genetic array (R-SGA), we assessed the effect of viable deletion mutants on transcription of various IME1 promoter–reporter genes. We discovered potential transcription factors, many of which have no perfect consensus site within the IME1 promoter. Moreover, most of the cis-regulatory sequences with perfect homology to known transcription factor (TF) consensus were found to be nonfunctional in the R-SGA analysis. In addition, our results suggest that lack of conservation may not discriminate against a TF regulatory role at a specific promoter. We demonstrate that Sum1 and Sok2, which regulate IME1, bind to nonperfect consensuses within nonconserved regions in the sensu stricto Saccharomyces strains. Our analysis supports the view that although comparative analysis can provide a useful guide, functional assays are required for accurate identification of TF-binding site interactions in complex promoters.


Nature Communications | 2016

H2A.Z controls the stability and mobility of nucleosomes to regulate expression of the LH genes

Sergei Rudnizky; Adaiah Bavly; Omri Malik; Lilach Pnueli; Philippa Melamed; Ariel Kaplan

The structure and dynamics of promoter chromatin have a profound effect on the expression levels of genes. Yet, the contribution of DNA sequence, histone post-translational modifications, histone variant usage and other factors in shaping the architecture of chromatin, and the mechanisms by which this architecture modulates expression of specific genes are not yet completely understood. Here we use optical tweezers to study the roles that DNA sequence and the histone variant H2A.Z have in shaping the chromatin landscape at the promoters of two model genes, Cga and Lhb. Guided by MNase mapping of the promoters of these genes, we reconstitute nucleosomes that mimic those located near the transcriptional start site and immediately downstream (+1), and measure the forces required to disrupt these nucleosomes, and their mobility along the DNA sequence. Our results indicate that these genes are basally regulated by two distinct strategies, making use of H2A.Z to modulate separate phases of transcription, and highlight how DNA sequence, alternative histone variants and remodelling machinery act synergistically to modulate gene expression.

Collaboration


Dive into the Lilach Pnueli's collaboration.

Top Co-Authors

Avatar

Philippa Melamed

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sergei Rudnizky

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yahav Yosefzon

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yoav Arava

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yona Kassir

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrea Wijeweera

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alona Feldman

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ariel Kaplan

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Majd Haj

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ron Mittler

University of North Texas

View shared research outputs
Researchain Logo
Decentralizing Knowledge