Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lili An is active.

Publication


Featured researches published by Lili An.


Nucleic Acids Research | 2008

Rad9 plays an important role in DNA mismatch repair through physical interaction with MLH1.

Wei He; Yun Zhao; Chunbo Zhang; Lili An; Zhishang Hu; Yuheng Liu; Lu Han; Lijun Bi; Zhensheng Xie; Peng Xue; Fuquan Yang; Haiying Hang

Rad9 is conserved from yeast to humans and plays roles in DNA repair (homologous recombination repair, and base-pair excision repair) and cell cycle checkpoint controls. It has not previously been reported whether Rad9 is involved in DNA mismatch repair (MMR). In this study, we have demonstrated that both human and mouse Rad9 interacts physically with the MMR protein MLH1. Disruption of the interaction by a single-point mutation in Rad9 leads to significantly reduced MMR activity. This disruption does not affect S/M checkpoint control and the first round of G2/M checkpoint control, nor does it alter cell sensitivity to UV light, gamma rays or hydroxyurea. Our data indicate that Rad9 is an important factor in MMR and carries out its MMR function specifically through interaction with MLH1.


PLOS ONE | 2011

Effects of simulated microgravity on embryonic stem cells.

Yulan Wang; Lili An; Yuanda Jiang; Haiying Hang

There have been many studies on the biological effects of simulated microgravity (SMG) on differentiated cells or adult stem cells. However, there has been no systematic study on the effects of SMG on embryonic stem (ES) cells. In this study, we investigated various effects (including cell proliferation, cell cycle distribution, cell differentiation, cell adhesion, apoptosis, genomic integrity and DNA damage repair) of SMG on mouse embryonic stem (mES) cells. Mouse ES cells cultured under SMG condition had a significantly reduced total cell number compared with cells cultured under 1 g gravity (1G) condition. However, there was no significant difference in cell cycle distribution between SMG and 1G culture conditions, indicating that cell proliferation was not impaired significantly by SMG and was not a major factor contributing to the total cell number reduction. In contrast, a lower adhesion rate cultured under SMG condition contributed to the lower cell number in SMG. Our results also revealed that SMG alone could not induce DNA damage in mES cells while it could affect the repair of radiation-induced DNA lesions of mES cells. Taken together, mES cells were sensitive to SMG and the major alterations in cellular events were cell number expansion, adhesion rate decrease, increased apoptosis and delayed DNA repair progression, which are distinct from the responses of other types of cells to SMG.


Journal of Biological Chemistry | 2010

Rad9 is required for B cell proliferation and immunoglobulin class switch recombination

Lili An; Yulan Wang; Yuheng Liu; Xiao Yang; Chunchun Liu; Zhishang Hu; Wei He; Wenxia Song; Haiying Hang

B cell maturation and B cell-mediated antibody response require programmed DNA modifications such as the V(D)J recombination, the immunoglobulin (Ig) class switch recombination, and the somatic hypermutation to generate functional Igs. Many protein factors involved in DNA damage repair have been shown to be critical for the maturation and activation of B cells. Rad9 plays an important role in both DNA repair and cell cycle checkpoint control. However, its role in Ig generation has not been reported. In this study, we generated a conditional knock-out mouse line in which Rad9 is deleted specifically in B cells and investigated the function of Rad9 in B cells. The Rad9−/− B cells isolated from the conditional knock-out mice displayed impaired growth response and enhanced DNA lesions. Impaired Ig production in response to immunization in Rad9−/− mice was also detected. In addition, the Ig class switch recombination is deficient in Rad9−/− B cells. Taken together, Rad9 plays dual roles in generating functional antibodies and in maintaining the integrity of the whole genome in B cells.


DNA Repair | 2013

Checkpoint protein Rad9 plays an important role in nucleotide excision repair.

Tiepeng Li; Zhixin Wang; Yun Zhao; Wei He; Lili An; Shengquan Liu; Yuheng Liu; Hailin Wang; Haiying Hang

Rad9, an evolutionarily conserved checkpoint gene with multiple functions for preserving genomic integrity, has been shown to play important roles in homologous recombination repair, base excision repair and mismatch repair. However, whether Rad9 has an impact on nucleotide excision repair remains unknown. Here we demonstrated that Rad9 was involved in nucleotide excision repair and loss of Rad9 led to defective removal of the UV-derived photoproduct 6-4PP (6,4 pyrimidine-pyrimidone) and the BPDE (anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide)-DNA adducts in mammalian cells. We also demonstrated that Rad9 could co-localize with XPC in response to local UV irradiation. However, our data showed that Rad9 was not required for the photoproducts recognition step of nucleotide excision repair. Further investigation revealed that reduction of Rad9 reduced the UV-induced transcription of the genes of the nucleotide excision repair factors DDB2, XPC, DDB1 and XPB and DDB2 protein levels in human cells. Interestingly, knockdown of one subunit of DNA damage recognition complex, hHR23B impaired Rad9-loading onto UV-damaged chromatin. Based on these results, we suggest that Rad9 plays an important role in nucleotide excision repair through mechanisms including maintaining DDB2 protein level in human cells.


Carcinogenesis | 2010

Hydroxyurea-induced global transcriptional suppression in mouse ES cells

Peng Cui; Qiang Lin; Chengqi Xin; Lu Han; Lili An; Yulan Wang; Zhishang Hu; Feng Ding; Lingfang Zhang; Songnian Hu; Haiying Hang; Jun Yu

Hydroxyurea (HU), as a therapeutic medicine, has been extensively used clinically. To further survey molecular mechanisms of HU treatment, we analyzed global transcriptomic alteration of mouse ES cells in response to the treatment using high-throughput sequencing. We show that the global transcriptional activity is significantly suppressed as cells are exposed to HU treatment and alters multiple key cellular pathways, including cell cycle, apoptosis and DNAs. HU treatment also alters alternative splicing mechanisms and suppresses non-coding RNA expression. Our result provides novel clues for the understanding of how cells respond to HU and further suggests that high-throughput sequencing technology provides a powerful tool to study mechanisms of clinical drugs at the cellular level.


Protein & Cell | 2012

Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells

Shaopeng Chen; Junkang Qiu; Chuan Chen; Chunchun Liu; Yuheng Liu; Lili An; Junying Jia; Jie Tang; Lijun Wu; Haiying Hang

Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-α scFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient.


PLOS ONE | 2015

Increased Sensitivity of DNA Damage Response-Deficient Cells to Stimulated Microgravity-Induced DNA Lesions

Nan Li; Lili An; Haiying Hang

Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9 -/- MES and Mdc1 -/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9 -/- MES. As the exposure to SMG was prolonged, Rad9 -/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9 -/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1 -/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1 -/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects.


Protein & Cell | 2011

Targeted deletion of mouse Rad1 leads to deficient cellular DNA damage responses

Chunbo Zhang; Yuheng Liu; Zhishang Hu; Lili An; Yikun He; Haiying Hang

The Rad1 gene is evolutionarily conserved from yeast to human. The fission yeast Schizosaccharomyces pombe Rad1 ortholog promotes cell survival against DNA damage and is required for G2/M checkpoint activation. In this study, mouse embryonic stem (ES) cells with a targeted deletion of Mrad1, the mouse ortholog of this gene, were created to evaluate its function in mammalian cells. Mrad1−/− ES cells were highly sensitive to ultraviolet-light (UV light), hydroxyurea (HU) and gamma rays, and were defective in G2/M as well as S/M checkpoints. These data indicate that Mrad1 is required for repairing DNA lesions induced by UV-light, HU and gamma rays, and for mediating G2/M and S/M checkpoint controls. We further demonstrated that Mrad1 plays an important role in homologous recombination repair (HRR) in ES cells, but a minor HRR role in differentiated mouse cells.


Archive | 2018

Activation-Induced Cytidine Deaminase Aided In Vitro Antibody Evolution

Lili An; Chuan Chen; Ruiqi Luo; Yun Zhao; Haiying Hang

Activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) by converting deoxycytidines (dC) to deoxyuracils (dU) which then can induce other mutations, and plays a central role in introducing diversification of the antibody repertoire in B cells. Ectopic expression of AID in bacteria and non-B cells can also lead to frequent mutations in highly expressed genes. Taking advantage of this feature of AID, in recent years, systems coupling in vitro somatic hypermutation and mammalian cell surface display have been developed, with unique benefits in antibody discovery and optimization in vitro. Here, we provide a protocol for AID mediated in vitro protein evolution. A CHO cell clone bearing a single gene expression cassette has been constructed. The gene of an interested protein for in vitro evolution can be easily inserted into the cassette by dual recombinase-mediated cassette exchange (RMCE) and constantly expressed at high levels. Here, we matured an anti-TNFα antibody as an example. Firstly, we obtained a CHO cell clone highly displaying the antibody by dual RMCE. Then, the plasmid expressing AID is transfected into the CHO cells. After a few rounds of cell sorting-cell proliferation, mutant antibodies with improved features can be generated. This protocol can be applied for improving protein features based on displaying levels on cell surface and protein-protein interaction, and thus is able to enhance affinity, specificity, and stability besides others.


Applied Microbiology and Biotechnology | 2018

Affinity maturation of an antibody for the UV-induced DNA lesions 6,4 pyrimidine-pyrimidones

Bingjie Kong; Yang Cao; Danni Wu; Lili An; Fanlei Ran; Yan Lin; Chen Ye; Hailin Wang; Haiying Hang

DNA lesions, associated mostly with minor changes in DNA structure, may induce permanent change in heritable coding information. Biochemically, these minor structural changes are difficult to be explored for generating high-affinity antibodies to detect specific DNA lesions in varying sequence contexts. Herein, we established a platform of bacterial display to facilitate antibodies to be matured with high affinity and high specificity against DNA lesions. To achieve this goal, we, for the first time, developed a two-round mutation/screening strategy: (1) using multiple lesion-containing DNA probes for primary maturation and (2) using single lesion-containing DNA probes for second maturation. Specifically, we capitalized on 64M-2 as a parental template to improve affinity for 6-4PP by 710-fold, compared with the model one. In addition, the matured antibody (9c3) is found to be much less dependent on the bases surrounding 6-4PPs than the model one. The mechanistic study from both computational simulation and reverse mutations revealed the critical roles of the two-round mutations in the enhanced binding affinity and independence of surrounding bases. This selection strategy opens a new way to improve affinity and specificity of antibodies for other DNA lesions.

Collaboration


Dive into the Lili An's collaboration.

Top Co-Authors

Avatar

Haiying Hang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuheng Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhishang Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yulan Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yun Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuan Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunbo Zhang

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Chunchun Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fanlei Ran

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge