Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lili Han is active.

Publication


Featured researches published by Lili Han.


Journal of Physical Chemistry B | 2015

Competitive Stereocomplexation, Homocrystallization, and Polymorphic Crystalline Transition in Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Blends: Molecular Weight Effects

Pengju Pan; Lili Han; Jianna Bao; Qing Xie; Guorong Shan; Yongzhong Bao

Competitive crystallization kinetics, polymorphic crystalline structure, and transition of poly(l-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) racemic blends with a wide range of molecular weights (MWs) were symmetrically investigated. Stereocomplex (sc) crystallites are exclusively formed in the low-MW racemic blends. However, stereocomplexation is remarkably depressed, and homocrystallization becomes prevailing with increasing MWs of PLLA and PDLA. Suppressed stereocomplexation in high-MW (HMW) racemic blends is proposed to be due to the low chain diffusion ability and restricted intermolecular crystal nucleation/growth. Equilibrium melting point of sc crystallites first increases and then decreases as MW increases. Crystallinity and relative fraction of sc crystallites in racemic blends enhance with crystallization temperature (Tc), and the sc crystallites are merely formed at Tc > 170 °C because of their higher thermodynamic stability. In situ wide-angle X-ray diffraction (WAXD) analysis reveals that the stereocomplexation and homocrystallization are successive rather than completely simultaneous, and the stereocomplexation is preceding homocrystallization in isothermal crystallization of HMW racemic blends. Both initial crystalline structure of homocrystallites (hc) and MW influence the heating-induced hc-to-sc transition of HMW racemic blend drastically; the hc-to-sc transition becomes easier with decreasing Tc and MW. After crystallization at the same temperature, sc crystallites show smaller long period than their hc counterparts.


Journal of Physical Chemistry B | 2015

Exclusive Stereocomplex Crystallization of Linear and Multiarm Star-Shaped High-Molecular-Weight Stereo Diblock Poly(lactic acid)s.

Lili Han; Guorong Shan; Yongzhong Bao; Pengju Pan

Linear, 3-arm, and 6-arm star-shaped stereo diblock copolymers of l- and d-lactic acid (PLLA-b-PDLA) with high molecular weights (MWs) were synthesized via two-step ring-opening polymerization (ROP) with 1-dodechanol, glycerol, and d-sorbitol as the initiators, respectively. The chemical structure, nonisothermal and isothermal crystallization kinetics, crystalline structure, lamellar morphology, and mechanical thermal properties of PLLA-b-PDLAs with different macromolecular topologies were investigated. Compared to the high-molecular-weight (MW) poly(l-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) racemic blends, PLLA-b-PDLAs exhibit faster crystallization upon cooling and isothermal melt crystallization; they crystallize exclusively in stereocomplex (sc) crystallites under all of the conditions investigated. This is attributable to the enhanced interactions between enantiomeric blocks linked covalently. Macromolecular topology influences the crystallization kinetics and crystalline structure of PLLA-b-PDLAs significantly. The crystallization temperature upon cooling, melting temperature, degree of crystallinity, spherulitic growth rate, crystallite size, long period, and crystalline layer thickness of PLLA-b-PDLA decrease with increasing branching number because of the retarding effect of branching on the crystallization rate and crystallizability. Because of the formation of high-melting-point sc crystallites, both the linear and star-shaped PLLA-b-PDLAs exhibit better thermal resistance and higher storage moduli at high temperature than does homocrystalline PLLA.


Journal of Physical Chemistry B | 2015

Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology

Jianna Bao; Lili Han; Guorong Shan; Yongzhong Bao; Pengju Pan

Although stereocomplex (sc) crystallization is highly effective for improving the thermal resistance of poly(lactic acid) (PLA), it is much less predominant than homocrystallization in high-molecular-weight (HMW) poly(l-lactic acid)/ poly(d-lactic acid) (PLLA/PDLA) racemic blends. In this contribution, the sc crystallization of HMW PLLA/PDLA racemic blends was facilitated by using comblike PLAs with cellulose acetate as the backbone. Competing crystallization kinetics, polymorphic crystalline structure, and structural transition of comblike PLLA/PDLA blends with a wide range of MWs were investigated and compared with the corresponding linear/comblike and linear blends. The HMW comblike blend is preferentially crystallized in sc polymorphs and exhibits a faster crystallization rate than does the corresponding linear blend. The sc crystallites are predominantly formed in nonisothermal cold crystallization and isothermal crystallization at temperatures above 120 °C for the comblike blends. Except for the facilitated sc formation in primary crystallization, synchrotron radiation WAXD analysis indicates that the presence of a comblike component also facilitates the transition or recrystallization from homocrystallite (hc) to sc crystallite upon heating. Preferential sc formation of comblike blends is probably attributable to the favorable interdigitation between enantiomeric branches and the increased mobility of polymer segments. After crystallization under the same temperature, the comblike blends, which mainly contain sc crystallites, show smaller long periods and thinner crystalline lamellae than do the corresponding PLLA with homocrystalline structures.


Polymer Chemistry | 2017

Click chemistry synthesis, stereocomplex formation, and enhanced thermal properties of well-defined poly(L-lactic acid)-b-poly(D-lactic acid) stereo diblock copolymers

Lili Han; Qing Xie; Jianna Bao; Guorong Shan; Yongzhong Bao; Pengju Pan

Stereoblock copolymerization of lactide enantiomers has been a feasible method to prepare stereocomplexed poly(lactic acid) (PLA) with highly improved thermal resistance. However, synthesis of high-molecular-weight (HMW) poly(L-lactic acid)-b-poly(D-lactic acid) (PLLA-b-PDLA) stereoblock copolymers with controlled stereoblock length and composition is still challenging. Herein we synthesized well-defined PLLA-b-PDLA stereo diblock copolymers with different molecular weights (MWs, 14–110 kDa) and PLLA and PDLA block lengths by a combination of ring-opening polymerization and azide/alkyne click chemistry. The crystallization kinetics, polymorphic crystalline structure, lamellar morphology, and thermomechanical properties of the PLLA-b-PDLAs were systematically investigated. All the PLLA-b-PDLAs exhibit fast crystallization and predominantly form stereocomplexes (SCs) during the cooling and heating processes. Symmetric PLLA-b-PDLAs with similar PLLA and PDLA block lengths exclusively crystallize in the SCs at all the investigated crystallization temperatures (Tcs) in melt crystallization; but asymmetric PLLA-b-PDLAs with very different PLLA and PDLA block lengths crystallize in both SCs and homocrystallites (HCs) at a low Tc (<160 °C). Because of the formation of high-melting-point SCs, HMW PLLA-b-PDLAs exhibit better thermal resistance and higher storage moduli at a high temperature range (170–200 °C) than the homocrystalline PLLA.


Journal of Physical Chemistry B | 2016

Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride)

Chengtao Yu; Lili Han; Jianna Bao; Guorong Shan; Yongzhong Bao; Pengju Pan

The effects of poly(vinylidene fluoride) (PVDF) on the crystallization kinetics, competing formations of homocrystallites (HCs) and stereocomplexes (SCs), polymorphic crystalline structure, and HC-to-SC crystalline reorganization of the poly(l-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) racemic mixture were investigated. Even though the PLLA/PDLA/PVDF blends are immiscible, blending with PVDF enhances the crystallization rate and SC formation of PLLA/PDLA components at different temperatures that are higher or lower than the melting temperature of the PVDF component; it also facilitates the HC-to-SC melt reorganization upon heating. The crystallization rate and degree of SC crystallinity (Xc,SC) of PLLA/PDLA components in nonisothermal crystallization increase after immiscible blending with PVDF. At different isothermal crystallization temperatures, the crystallization half-time of PLLA/PDLA components decreases; its spherulitic growth rate and Xc,SC increase as the mass fraction of PVDF increases from 0 to 0.5 in the presence of either a solidified or a molten PVDF phase. The HCs formed in primary crystallization of PLLA/PDLA components melt and recrystallize into SCs upon heating; the HC-to-SC melt reorganization is promoted after blending with PVDF. We proposed that the PVDF-promoted crystallization, SC formation, and HC-to-SC melt reorganization of PLLA/PDLA components in PLLA/PDLA/PVDF blends stem from the enhanced diffusion ability of PLLA and PDLA chains.


Polymer | 2015

Stereocomplex crystallization of high-molecular-weight poly(l-lactic acid)/poly(d-lactic acid) racemic blends promoted by a selective nucleator

Lili Han; Pengju Pan; Guorong Shan; Yongzhong Bao


ACS Sustainable Chemistry & Engineering | 2016

Polymorphic Crystalline Structure and Crystal Morphology of Enantiomeric Poly(lactic acid) Blends Tailored by a Self-Assemblable Aryl Amide Nucleator

Qing Xie; Lili Han; Guorong Shan; Yongzhong Bao; Pengju Pan


Macromolecules | 2014

Heating and Annealing Induced Structural Reorganization and Embrittlement of Solution-Crystallized Poly(l-lactic acid)

Pengju Pan; Lili Han; Guorong Shan; Yongzhong Bao


ACS Sustainable Chemistry & Engineering | 2016

ABA-Type Thermoplastic Elastomers Composed of Poly(ε-caprolactone-co-δ-valerolactone) Soft Midblock and Polymorphic Poly(lactic acid) Hard End blocks

Yongfeng Huang; Ruoxing Chang; Lili Han; Guorong Shan; Yongzhong Bao; Pengju Pan


Polymer | 2016

Stereocomplexation of high-molecular-weight enantiomeric poly(lactic acid)s enhanced by miscible polymer blending with hydrogen bond interactions

Pengju Pan; Jianna Bao; Lili Han; Qing Xie; Guorong Shan; Yongzhong Bao

Collaboration


Dive into the Lili Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tungalag Dong

Inner Mongolia Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xueyan Yun

Inner Mongolia Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge