Lilian Gout
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lilian Gout.
PLOS Genetics | 2011
Joelle Amselem; Christina A. Cuomo; Jan A. L. van Kan; Muriel Viaud; Ernesto P. Benito; Arnaud Couloux; Pedro M. Coutinho; Ronald P. de Vries; Paul S. Dyer; Sabine Fillinger; Elisabeth Fournier; Lilian Gout; Matthias Hahn; Linda T. Kohn; Nicolas Lapalu; Kim M. Plummer; Jean-Marc Pradier; Emmanuel Quévillon; Amir Sharon; Adeline Simon; Arjen ten Have; Bettina Tudzynski; Paul Tudzynski; Patrick Wincker; Marion Andrew; Véronique Anthouard; Ross E. Beever; Rolland Beffa; Isabelle Benoit; Ourdia Bouzid
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.
Nature Communications | 2011
Thierry Rouxel; Grandaubert J; James K. Hane; Hoede C; van de Wouw Ap; Arnaud Couloux; Dominguez; Anthouard; Bally P; Bourras S; Anton J. Cozijnsen; Ciuffetti Lm; Degrave A; Dilmaghani A; Duret L; Fudal I; Goodwin Sb; Lilian Gout; Nicolas Glaser; Linglin J; Kema Gh; Lapalu N; Lawrence Cb; May K; Michel Meyer; Benedicte Ollivier; Julie Poulain; Schoch Cl; Simon A; Spatafora Jw
Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification. In this study, we report the genome sequence of the phytopathogenic ascomycete Leptosphaeria maculans and characterize its repertoire of protein effectors. The L. maculans genome has an unusual bipartite structure with alternating distinct guanine and cytosine-equilibrated and adenine and thymine (AT)-rich blocks of homogenous nucleotide composition. The AT-rich blocks comprise one-third of the genome and contain effector genes and families of transposable elements, both of which are affected by repeat-induced point mutation, a fungal-specific genome defence mechanism. This genomic environment for effectors promotes rapid sequence diversification and underpins the evolutionary potential of the fungus to adapt rapidly to novel host-derived constraints.
Molecular Microbiology | 2006
Lilian Gout; Isabelle Fudal; Marie-Line Kuhn; Françoise Blaise; Maria Eckert; Laurence Cattolico; Marie-Hélène Balesdent; Thierry Rouxel
Leptosphaeria maculans, a Dothideomycete causing stem canker on oilseed rape (Brassica napus), develops gene‐for‐gene interactions with its host plants. To date, nine resistance genes (Rlm1–9) have been identified in Brassica spp. The corresponding nine avirulence genes (AvrLm1–9) in L. maculans have been mapped at four independent loci, thereby revealing two clusters of three and four linked avirulence genes. Here, we report the completion of map‐based cloning of AvrLm1. AvrLm1 was genetically delineated within a 7.3 centimorgan interval corresponding to a 439 kb BAC contig. AvrLm1 is a single copy gene isolated within a 269 kb non‐coding, heterochromatin‐like region. The region comprised a number of degenerated, nested copies of four long‐terminal repeat (LTR) retrotransposons, including Pholy and three novel Gypsy‐like retrotransposons. AvrLm1 restored the avirulent phenotype on Rlm1 cultivars following functional complementation of virulent isolates. AvrLm1 homologues were not detected in other Leptosphaeria species or in known fungal genomes including the closely related species Stagonospora nodorum. The predicted AvrLm1 protein is composed of 205 amino acids, of which only one is a cysteine residue. It contains a peptide signal suggesting extracellular localization. Unlike most other fungal avirulence genes, AvrLm1 is constitutively expressed, with a probable increased level of expression upon plant infection, suggesting the absence of tight regulation of AvrLm1 expression.
Phytopathology | 2005
Marie-Hélène Balesdent; Martin J. Barbetti; Hua Li; Krishnapillai Sivasithamparam; Lilian Gout; Thierry Rouxel
ABSTRACT Leptosphaeria maculans, the causal agent of stem canker of oilseed rape, develops gene-for-gene interactions with its hosts. To date, eight L. maculans avirulence (Avr) genes, AvrLm1 to AvrLm8, have been genetically characterized. An additional Avr gene, AvrLm9, that interacts with the resistance gene Rlm9, was genetically characterized here following in vitro crosses of the pathogen. A worldwide collection of 63 isolates, including the International Blackleg of Crucifers Network collection, was genotyped at these nine Avr loci. In a first step, isolates were classified into pathogenicity groups (PGs) using two published differential sets. This analysis revealed geographical disparities as regards the proportion of each PG. Genotyping of isolates at all Avr loci confirmed the disparities between continents, in terms of Avr allele frequencies, particularly for AvrLm2, AvrLm3, AvrLm7, AvrLm8, and AvrLm9, or in terms of race structure, diversity, and complexity. Twenty-six distinct races were identified in the collection. A larger number of races (n = 18) was found in Australia than in Europe (n = 8). Mean number of virulence alleles per isolate was also higher in Australia (5.11 virulence alleles) than in Europe (4.33) and Canada (3.46). Due to the diversity of populations of L. maculans evidenced here at the race level, a new, open terminology is proposed for L. maculans race designation, indicating all Avr loci for which the isolate is avirulent.
PLOS Pathogens | 2012
Guillaume Daverdin; Thierry Rouxel; Lilian Gout; Jean-Noël Aubertot; Isabelle Fudal; Michel Meyer; Francis Parlange; Julien Carpezat; Marie-Hélène Balesdent
Modern agriculture favours the selection and spread of novel plant diseases. Furthermore, crop genetic resistance against pathogens is often rendered ineffective within a few years of its commercial deployment. Leptosphaeria maculans, the cause of phoma stem canker of oilseed rape, develops gene-for-gene interactions with its host plant, and has a high evolutionary potential to render ineffective novel sources of resistance in crops. Here, we established a four-year field experiment to monitor the evolution of populations confronted with the newly released Rlm7 resistance and to investigate the nature of the mutations responsible for virulence against Rlm7. A total of 2551 fungal isolates were collected from experimental crops of a Rlm7 cultivar or a cultivar without Rlm7. All isolates were phenotyped for virulence and a subset was genotyped with neutral genetic markers. Virulent isolates were investigated for molecular events at the AvrLm4-7 locus. Whilst virulent isolates were not found in neighbouring crops, their frequency had reached 36% in the experimental field after four years. An extreme diversity of independent molecular events leading to virulence was identified in populations, with large-scale Repeat Induced Point mutations or complete deletion of AvrLm4-7 being the most frequent. Our data suggest that increased mutability of fungal genes involved in the interactions with plants is directly related to their genomic environment and reproductive system. Thus, rapid allelic diversification of avirulence genes can be generated in L. maculans populations in a single field provided that large population sizes and sexual reproduction are favoured by agricultural practices.
Molecular Ecology | 2012
Azita Dilmaghani; Pierre Gladieux; Lilian Gout; Tatiana Giraud; Patrick C. Brunner; Anna Stachowiak; Marie-Hélène Balesdent; Thierry Rouxel
Pathogen introductions into novel areas can lead to the emergence of new fungal diseases of plants. Understanding the origin, introduction pathways, possible changes in reproductive system and population size of fungal pathogens is essential in devising an integrated strategy for the control of these diseases. We used minisatellite markers to infer the worldwide invasion history of the fungal plant pathogen Leptosphaeria maculans, which causes stem canker (blackleg) of oilseed and vegetable brassicas. Clustering analyses partitioned genotypes into distinct populations corresponding to major geographic regions, along with two differentiated populations in Western Canada. Comparison of invasion scenarios using Approximate Bayesian Computation suggested an origin of the pathogen in the USA, the region where epidemics were first recorded, and independent introductions from there over the last few decades into Eastern Canada (Ontario), Europe and Australia. The population in Western Canada appeared to be founded from a source in Ontario and the population in Chile resulted from an admixture between multiple sources. A bottleneck was inferred for the introduction into Western Canada but not into Europe, Ontario or Australia. Clonality appeared high in Western Canada, possibly because environmental conditions there were less conducive to sexual reproduction. Leptosphaeria maculans is a model invasive pathogen with contrasting features in different regions: shallow population structure, high genetic variability and regular sexual recombination in some regions, by comparison with reduced genetic variability, high rates of asexual multiplication, strong population structure or admixture in others.
Infection, Genetics and Evolution | 2012
Gabriela Aguileta; Juliette Lengellé; Hélène Chiapello; Tatiana Giraud; Muriel Viaud; Elisabeth Fournier; François Rodolphe; Sylvain Marthey; Aurélie Ducasse; Annie Gendrault; Julie Poulain; Patrick Wincker; Lilian Gout
The rapid evolution of particular genes is essential for the adaptation of pathogens to new hosts and new environments. Powerful methods have been developed for detecting targets of selection in the genome. Here we used divergence data to compare genes among four closely related fungal pathogens adapted to different hosts to elucidate the functions putatively involved in adaptive processes. For this goal, ESTs were sequenced in the specialist fungal pathogens Botrytis tulipae and Botrytis ficariarum, and compared with genome sequences of Botrytis cinerea and Sclerotinia sclerotiorum, responsible for diseases on over 200 plant species. A maximum likelihood-based analysis of 642 predicted orthologs detected 21 genes showing footprints of positive selection. These results were validated by resequencing nine of these genes in additional Botrytis species, showing they have also been rapidly evolving in other related species. Twenty of the 21 genes had not previously been identified as pathogenicity factors in B. cinerea, but some had functions related to plant-fungus interactions. The putative functions were involved in respiratory and energy metabolism, protein and RNA metabolism, signal transduction or virulence, similarly to what was detected in previous studies using the same approach in other pathogens. Mutants of B. cinerea were generated for four of these genes as a first attempt to elucidate their functions.
European Journal of Plant Pathology | 2006
Marie-Line Kuhn; Lilian Gout; Barbara J. Howlett; Delphine Melayah; Michel Meyer; Marie-Hélène Balesdent; Thierry Rouxel
Leptosphaeria maculans is a haploid outcrossing ascomycete with a genome size of about 34 Megabases (Mb) which is predicted to have between 10,000 and 12,000 genes. The chromosomes of L. maculans are of a size range (0.7–3.5 Mb) and number (15–16) that can be readily resolved by pulsed field gel electrophoresis. Chromosome length polymorphisms are generated by meiosis giving rise to size differences as high as 57%, in the case of the ribosomal DNA-harbouring chromosome whose size varies between 1.8 and 4.2 Mb. Genetic maps are characterised by linkage groups comprising an accumulation of markers based on retrotransposon sequences. This, along with sequencing of pericentromeric regions and stretches of ORF-rich regions, suggest that the genome of L. maculans consists of a mosaic of GC-equilibrated coding regions with no or few transposons, and of stretches of highly degenerated and truncated retrotransposons, encompassing very few genes. Chromosome length polymorphisms are linked with the loss of dispensable regions. We suggest that the degree of length polymorphism for a particular chromosome correlates to the amount of dispensable retrotransposons, and that some gene-rich chromosomes may be less prone to undergo chromosome length polymorphisms than other chromosomes.
Frontiers in Plant Science | 2017
Anne Génissel; Johann Confais; Marc-Henri Lebrun; Lilian Gout
One of the main goal in phytopathology is to better understand the molecular basis of plant–pathogen co-evolution through the identification of effectors and effector targets that play a role in natural phenotypic variation. Fortunately, next generation sequencing (NGS)—which can measure genetic variation at hundreds of thousands of markers across a genome, including for non-model organisms—is now helping to reach this goal. Among all possible strategies using NGS data, we expect that genome-wide association studies (GWAS) have the most potential to revolutionize the field of phytopathology. In contrast to QTL mapping, GWAS use outbred populations to capture the standing genetic variation, thus characterizing the raw material for evolution. By examining the natural phenotypic and genetic variation, association mapping can elucidate the genetic basis underlying complex traits. In the two decades since association mapping successfully detected common variants for human complex diseases (Risch and Merikangas, 1996) and with the publication of the first successful GWAS in humans in 2005 (Klein et al., 2005), the number of published GWAS keeps increasing. Researchers in the field of plant pathogens are now embarking on GWAS, with the promise to open new frontiers of research.
European Journal of Plant Pathology | 2003
Thierry Rouxel; Annette Penaud; X. Pinochet; H. Brun; Lilian Gout; Régine Delourme; Jacques Schmit; Marie-Hélène Balesdent