Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lilian L. Beloti is active.

Publication


Featured researches published by Lilian L. Beloti.


Journal of Biotechnology | 2014

Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide

Marianna Teixeira de Pinho Favaro; M.A.S. de Toledo; R. F. Alves; Clelton A. Santos; Lilian L. Beloti; Richard Janissen; L.G. de la Torre; Anete Pereira de Souza; Adriano R. Azzoni

Gene therapy and DNA vaccination trials are limited by the lack of gene delivery vectors that combine efficiency and safety. Hence, the development of modular recombinant proteins able to mimic mechanisms used by viruses for intracellular trafficking and nuclear delivery is an important strategy. We designed a modular protein (named T-Rp3) composed of the recombinant human dynein light chain Rp3 fused to an N-terminal DNA-binding domain and a C-terminal membrane active peptide, TAT. The T-Rp3 protein was successfully expressed in Escherichia coli and interacted with the dynein intermediate chain in vitro. It was also proven to efficiently interact and condense plasmid DNA, forming a stable, small (∼100nm) and positively charged (+28.6mV) complex. Transfection of HeLa cells using T-Rp3 revealed that the vector is highly dependent on microtubule polarization, being 400 times more efficient than protamine, and only 13 times less efficient than Lipofectamine 2000™, but with a lower cytotoxicity. Confocal laser scanning microcopy studies revealed perinuclear accumulation of the vector, most likely as a result of transport via microtubules. This study contributes to the development of more efficient and less cytotoxic proteins for non-viral gene delivery.


Protein Expression and Purification | 2013

A novel and enantioselective epoxide hydrolase from Aspergillus brasiliensis CCT 1435: Purification and characterization

Lilian L. Beloti; Bruna Zucoloto da Costa; Marcelo A.S. Toledo; Clelton A. Santos; Aline Crucello; Marianna Teixeira de Pinho Favaro; André da Silva Santiago; Juliano S. Mendes; Anita Jocelyne Marsaioli; Anete Pereira de Souza

A novel epoxide hydrolase from Aspergillus brasiliensis CCT1435 (AbEH) was cloned and overexpressed in Escherichia coli cells with a 6xHis-tag and purified by nickel affinity chromatography. Gel filtration analysis and circular dichroism measurements indicated that this novel AbEH is a homodimer in aqueous solution and contains the typical secondary structure of an α/β hydrolase fold. The activity of AbEH was initially assessed using the fluorogenic probe O-(3,4-epoxybutyl) umbelliferone and was active in a broad range of pH (6-9) and temperature (25-45°C); showing optimum performance at pH 6.0 and 30°C. The Michaelis constant (KM) and maximum rate (Vmax) values were 495μM and 0.24μM/s, respectively. Racemic styrene oxide (SO) was used as a substrate to assess the AbEH activity and enantioselectivity, and 66% of the SO was hydrolyzed after only 5min of reaction, with the remaining (S)-SO ee exceeding 99% in a typical kinetic resolution behavior. The AbEH-catalyzed hydrolysis of SO was also evaluated in a biphasic system of water:isooctane; (R)-diol in 84% ee and unreacted (S)-SO in 36% ee were produced, with 43% conversion in 24h, indicating a discrete enantioconvergent behavior for AbEH. This novel epoxide hydrolase has biotechnological potential for the preparation of enantiopure epoxides or vicinal diols.


Protein Expression and Purification | 2012

A novel protein refolding protocol for the solubilization and purification of recombinant peptidoglycan-associated lipoprotein from Xylella fastidiosa overexpressed in Escherichia coli.

Clelton A. Santos; Lilian L. Beloti; Marcelo A.S. Toledo; Aline Crucello; Marianna Teixeira de Pinho Favaro; Juliano S. Mendes; André da Silva Santiago; Adriano R. Azzoni; Anete Pereira de Souza

Xylella fastidiosa is a Gram-negative xylem-limited plant pathogenic bacterium responsible for several economically important crop diseases. Here, we present a novel and efficient protein refolding protocol for the solubilization and purification of recombinant X. fastidiosa peptidoglycan-associated lipoprotein (XfPal). Pal is an outer membrane protein that plays important roles in maintaining the integrity of the cell envelope and in bacterial pathogenicity. Because Pal has a highly hydrophobic N-terminal domain, the heterologous expression studies necessary for structural and functional protein characterization are laborious once the recombinant protein is present in inclusion bodies. Our protocol based on the denaturation of the XfPal-enriched inclusion bodies with 8M urea followed by buffer-exchange steps via dialysis proved effective for the solubilization and subsequent purification of XfPal, allowing us to obtain a large amount of relatively pure and folded protein. In addition, XfPal was biochemically and functionally characterized. The method for purification reported herein is valuable for further research on the three-dimensional structure and function of Pal and other outer membrane proteins and can contribute to a better understanding of the role of these proteins in bacterial pathogenicity, especially with regard to the plant pathogen X. fastidiosa.


PLOS ONE | 2015

Analysis of Genomic Regions of Trichoderma harzianum IOC-3844 Related to Biomass Degradation

Aline Crucello; Danilo Augusto Sforça; Maria Augusta Crivelente Horta; Clelton A. Santos; Américo José Carvalho Viana; Lilian L. Beloti; Marcelo A.S. Toledo; Michel Vincentz; Reginaldo Massanobu Kuroshu; Anete Pereira de Souza

Trichoderma harzianum IOC-3844 secretes high levels of cellulolytic-active enzymes and is therefore a promising strain for use in biotechnological applications in second-generation bioethanol production. However, the T. harzianum biomass degradation mechanism has not been well explored at the genetic level. The present work investigates six genomic regions (~150 kbp each) in this fungus that are enriched with genes related to biomass conversion. A BAC library consisting of 5,760 clones was constructed, with an average insert length of 90 kbp. The assembled BAC sequences revealed 232 predicted genes, 31.5% of which were related to catabolic pathways, including those involved in biomass degradation. An expression profile analysis based on RNA-Seq data demonstrated that putative regulatory elements, such as membrane transport proteins and transcription factors, are located in the same genomic regions as genes related to carbohydrate metabolism and exhibit similar expression profiles. Thus, we demonstrate a rapid and efficient tool that focuses on specific genomic regions by combining a BAC library with transcriptomic data. This is the first BAC-based structural genomic study of the cellulolytic fungus T. harzianum, and its findings provide new perspectives regarding the use of this species in biomass degradation processes.


Applied Microbiology and Biotechnology | 2014

Characterization of the human dynein light chain Rp3 and its use as a non-viral gene delivery vector

Marcelo A.S. Toledo; Marianna Teixeira de Pinho Favaro; R. F. Alves; Clelton A. Santos; Lilian L. Beloti; Aline Crucello; André da Silva Santiago; Juliano S. Mendes; Maria Augusta Crivelente Horta; Ricardo Aparicio; Anete Pereira de Souza; Adriano R. Azzoni

Dynein light chains mediate the interaction between the cargo and the dynein motor complex during retrograde microtubule-mediated transport in eukaryotic cells. In this study, we expressed and characterized the recombinant human dynein light chain Rp3 and developed a modified variant harboring an N-terminal DNA-binding domain (Rp3-Db). Our approach aimed to explore the retrograde cell machinery based on dynein to enhance plasmid DNA (pDNA) traffic along the cytosol toward the nucleus. In the context of non-viral gene delivery, Rp3-Db is expected to simultaneously interact with DNA and dynein, thereby enabling a more rapid and efficient transport of the genetic material across the cytoplasm. We successfully purified recombinant Rp3 and obtained a low-resolution structural model using small-angle X-ray scattering. Additionally, we observed that Rp3 is a homodimer under reducing conditions and remains stable over a broad pH range. The ability of Rp3 to interact with the dynein intermediate chain in vitro was also observed, indicating that the recombinant Rp3 is correctly folded and functional. Finally, Rp3-Db was successfully expressed and purified and exhibited the ability to interact with pDNA and mediate the transfection of cultured HeLa cells. Rp3-Db was also capable of interacting in vitro with dynein intermediate chains, indicating that the addition of the N-terminal DNA-binding domain does not compromise its function. The transfection level observed for Rp3-Db is far superior than that reported for protamine and is comparable to that of the cationic lipid LipofectamineTM. This report presents an initial characterization of a non-viral delivery vector based on the dynein light chain Rp3 and demonstrates the potential use of modified human light chains as gene delivery vectors.


Biochimica et Biophysica Acta | 2013

Small-angle X-ray scattering and in silico modeling approaches for the accurate functional annotation of an LysR-type transcriptional regulator.

Marcelo A.S. Toledo; Clelton A. Santos; Juliano S. Mendes; A.C. Pelloso; Lilian L. Beloti; Aline Crucello; Marianna Teixeira de Pinho Favaro; André da Silva Santiago; Dilaine R. S. Schneider; Antonio M. Saraiva; Dagmar Ruth Stach-Machado; Alessandra A. de Souza; Daniela B. B. Trivella; Ricardo Aparicio; Ljubica Tasic; Adriano R. Azzoni; Anete Pereira de Souza

Xylella fastidiosa is a xylem-limited, Gram-negative phytopathogen responsible for economically relevant crop diseases. Its genome was thus sequenced in an effort to characterize and understand its metabolism and pathogenic mechanisms. However, the assignment of the proper functions to the identified open reading frames (ORFs) of this pathogen was impaired due to a lack of sequence similarity in the databases. In the present work, we used small-angle X-ray scattering and in silico modeling approaches to characterize and assign a function to a predicted LysR-type transcriptional regulator in the X. fastidiosa (XfLysRL) genome. XfLysRL was predicted to be a homologue of BenM, which is a transcriptional regulator involved in the degradation pathway of aromatic compounds. Further functional assays confirmed the structural prediction because we observed that XfLysRL interacts with benzoate and cis,cis-muconic acid (also known as 2E,4E-hexa-2,4-dienedioic acid; hereafter named muconate), both of which are co-factors of BenM. In addition, we showed that the XfLysRL protein is differentially expressed during the different stages of X. fastidiosa biofilm formation and planktonic cell growth, which indicates that its expression responds to a cellular signal that is likely related to the aromatic compound degradation pathway. The assignment of the proper function to a protein is a key step toward understanding the cellular metabolic pathways and pathogenic mechanisms. In the context of X. fastidiosa, the characterization of the predicted ORFs may lead to a better understanding of the cellular pathways that are linked to its bacterial pathogenicity.


PLOS ONE | 2015

VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity

Juliano S. Mendes; André da Silva Santiago; Marcelo A.S. Toledo; Luciana K. Rosselli-Murai; Marianna Teixeira de Pinho Favaro; Clelton A. Santos; Maria Augusta Crivelente Horta; Aline Crucello; Lilian L. Beloti; Fabian V. Romero; Ljubica Tasic; Alessandra A. de Souza; Anete Pereira de Souza

Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.


BMC Genomics | 2017

Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry

Jaire Alves Ferreira Filho; Maria Augusta Crivelente Horta; Lilian L. Beloti; Clelton A. Santos; Anete Pereira de Souza

BackgroundTrichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass.ResultsIn this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins.ConclusionsIdentifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.


FEBS Journal | 2012

Functional and structural studies of the disulfide isomerase DsbC from the plant pathogen Xylella fastidiosa reveals a redox-dependent oligomeric modulation in vitro

Clelton A. Santos; Marcelo A.S. Toledo; Daniela B. B. Trivella; Lilian L. Beloti; Dilaine R. S. Schneider; Antonio M. Saraiva; Aline Crucello; Adriano R. Azzoni; Alessandra A. de Souza; Ricardo Aparicio; Anete Pereira de Souza

Xylella fastidiosa is a Gram‐negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low‐resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small‐angle X‐ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution.


Biochimica et Biophysica Acta | 2015

Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process

Clelton A. Santos; Richard Janissen; Marcelo A.S. Toledo; Lilian L. Beloti; Adriano R. Azzoni; M. A. Cotta; Anete Pereira de Souza

The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development.

Collaboration


Dive into the Lilian L. Beloti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clelton A. Santos

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Marcelo A.S. Toledo

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Aline Crucello

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juliano S. Mendes

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra A. de Souza

American Physical Therapy Association

View shared research outputs
Researchain Logo
Decentralizing Knowledge