Liliana M. R. Silva
University of Giessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liliana M. R. Silva.
Parasitology Research | 2014
Tamara Muñoz-Caro; Liliana M. R. Silva; Christin Ritter; Anja Taubert; Carlos Hermosilla
Extracellular trap (ET) formation has been demonstrated as an important novel effector mechanism of polymorphonuclear neutrophils (PMN), eosinophils, mast cells and macrophages acting extracellularly against pathogens. In the present study, we show that tachyzoites of the emerging apicomplexan parasite Besnoitia besnoiti, that have recently been reported as potent inducers of PMN-derived ETosis, also trigger the release of ETs in an additional cell type, namely in monocytes. Fluorescence illustrations as well as scanning electron microscopy analyses (SEM) showed monocyte-promoted ET formation to be rapidly induced upon exposure to viable tachyzoites of B. besnoiti. Classical characteristics of ETs were confirmed by the co-localization of extracellular DNA with histones (H3) or myeloperoxidase (MPO) in parasite-entrapping structures. Monocyte-derived ETs were efficiently abolished by DNase I treatment and significantly reduced by treatments with inhibitors of MPO and NADPH oxidase, thus strengthening the key roles of reactive oxygen species (ROS) and MPO in monocyte ET formation. For comparative reasons, we additionally tested sporozoite stages of the closely related parasite Eimeria bovis for their capacity to induce monocyte-derived ETs and showed that these stages indeed induce ETs. To our best knowledge, we here report for the first time on monocyte ETs against the apicomplexan parasites B. besnoiti and E. bovis. Our results indicate that monocyte-triggered ETs may represent an important effector mechanism of the host early innate immune response against B. besnoiti and add a new cell type to the list of cells capable to release ETs.
Veterinary Parasitology | 2016
D. Pérez; M.C. Muñoz; J.M. Molina; T. Muñoz-Caro; Liliana M. R. Silva; Anja Taubert; Carlos Hermosilla; Antonio Ruiz
Extracellular trap (ET) formation has been demonstrated as novel effector mechanism against diverse pathogens in polymorphonuclear neutrophils (PMN), eosinophils, mast cells, macrophages and recently also in monocytes. In the current study, we show that E. ninakohlyakimovae triggers the deliverance of monocyte-derived ETs in vitro. Fluorescence illustrations as well as scanning electron microscopy (SEM) analyses showed that monocyte-derived ET formation was rapidly induced upon exposure to viable sporozoites, sporocysts and oocysts of E. ninakohlyakimovae. Classical features of monocyte-released ETs were confirmed by the co-localization of extracellular DNA adorned with myeloperoxidase (MPO) and histones (H3) in parasite-entrapping structures. The treatment of caprine monocyte ET structures with NADPH oxidase inhibitor diphenylene iodondium (DPI) significantly reduced ETosis confirming the essential role of reactive oxygen species (ROS) in monocyte mediated ETs formation. Additionally, co-culture of monocytes with viable sporozoites and soluble oocyst antigen (SOA) induced distinct levels of cytokine and chemokine gene transcription. Thus, the transcription of genes encoding for IL-12 and TNF-α was significantly upregulated after sporozoite encounter. In contrast IL-6 and CCL2 gene transcripts were rather weakly induced by parasites. Conversely, SOA only induced the up-regulation of IL-6 and CCL2 gene transcription, and failed to enhance transcripts of IL-12 and TNF-α in vitro. We here report on monocyte-triggered ETs as novel effector mechanism against E. ninakohlyakimovae. Our results strongly suggest that monocyte-mediated innate immune reactions might play an important role in early host immune reactions against E. ninakohlyakimovae in goats.
Mediators of Inflammation | 2016
Liliana M. R. Silva; Tamara Muñoz-Caro; Rafael A. Burgos; María A. Hidalgo; Anja Taubert; Carlos Hermosilla
Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN), monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs) by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.
Revista Brasileira De Parasitologia Veterinaria | 2014
Liliana M. R. Silva; Maria João Martins Vila-Viçosa; Telmo Nunes; Anja Taubert; Carlos Hermosilla; Helder Cortes
Coccidiosis caused by Eimeria species is a major form of intestinal infection affecting intensively and semi-intensively reared goats. The province of Alentejo is the main goat-producing area in Portugal. Therefore, all 15 Serpentina goat farms in Alentejo were analyzed regarding the occurrence and diversity of Eimeria species. Fecal samples obtained from 144 animals (52.1% dairy goats, 47.9% pre-pubertal goats) were examined using the modified McMaster technique to determine the number of oocysts per gram of feces. Eimeria spp. oocysts were present in 98.61% of the fecal samples and, overall, nine different Eimeria species were identified. The most prevalent species were E. ninakohlyakimovae (88%) and E. arloingi (85%), followed by E. alijevi (63%) and E. caprovina (63%). The average number of oocysts shed was significantly lower in dairy goats than in pre-adult animals. Astonishingly, no clinical signs of coccidiosis were observed in any of the animals examined, even though they were shedding high numbers of oocysts and were infected with highly pathogenic species. Thus, implementation of routine diagnostic investigation of the occurrence and diversity of caprine Eimeria species may be a useful tool for determination and better understanding of their potential economic impact on goat herds in southern Portugal.
Veterinary Parasitology | 2017
Carlos Hermosilla; Sonja Kleinertz; Liliana M. R. Silva; Jörg Hirzmann; Djuro Huber; Josip Kusak; Anja Taubert
The European wolf (Canis lupus) is a large carnivore species present in limited areas of Europe with several small populations still being considered as endangered. Wolves can be infected by a wide range of protozoan and metazoan parasites with some of them affecting free-living wolf health condition. On this account, an epidemiological survey was conducted to analyze the actual parasite fauna in Croatian wild wolves. In total, 400 individual faecal samples were collected during field studies on wolf ecology in the years 2002-2011. Parasite stages were identified by the sodium acetate acetic acid formalin (SAF)-technique, carbolfuchsin-stained faecal smears and Giardia/Cryptosporidium coproantigen-ELISAs. A subset of taeniid eggs-positive wolf samples was additionally analyzed by PCR and subsequent sequencing to identify eggs on Echinococcus granulosus/E. multilocularis species level. In total 18 taxa of parasites were here detected. Sarcocystis spp. (19.1%) occurred most frequently in faecal samples, being followed by Capillaria spp. (16%), ancylostomatids (13.1%), Crenosoma vulpis (4.6%), Angiostrongylus vasorum (3.1%), Toxocara canis (2.8%), Hammondia/Neospora spp. (2.6 %), Cystoisospora ohioensis (2.1%), Giardia spp. (2.1%), Cystoisospora canis (1.8%), Cryptosporidium spp. (1.8%), Trichuris vulpis (1.5%), Taenia spp. (1.5%), Diphyllobothrium latum (1.5%), Strongyloides spp. (0.5%), Opisthorchis felineus (0.5%), Toxascaris leonina (0.3%), Mesocestoides litteratus (0.3%) and Alaria alata (0.3%). Some of the here identified parasites represent relevant pathogens for wolves, circulating between these carnivorous definitive hosts and a variety of mammalian intermediate hosts, e. g. Taenia spp. and Sarcocystis spp., while others are considered exclusively pathogenic for canids (e.g. A. vasorum, C. vulpis, T. vulpis, Cystoisospora spp.). This study provides first records on the occurrence of the two relevant anthropozoonotic parasites, Giardia spp. and Cryptosporidium spp., in wild wolves from Croatia.
Frontiers in Immunology | 2017
Rodolfo Villagra-Blanco; Liliana M. R. Silva; Tamara Muñoz-Caro; Zhengtao Yang; Jianhua Li; Ulrich Gärtner; Anja Taubert; Xichen Zhang; Carlos Hermosilla
Neospora caninum represents a relevant apicomplexan parasite causing severe reproductive disorders in cattle worldwide. Neutrophil extracellular trap (NET) generation was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites. In vitro interactions of bovine PMN with N. caninum were analyzed at different ratios and time spans. Extracellular DNA staining was used to illustrate the typical molecules of NETs [i.e., histones (H3), neutrophil elastase (NE), myeloperoxidase (MPO), pentraxin] via antibody-based immunofluorescence analyses. Functional inhibitor treatments were applied to reveal the role of several enzymes [NADPH oxidase (NOX), NE, MPO, PAD4], ATP-dependent P2Y2 receptor, store-operated Ca++entry (SOCE), CD11b receptor, ERK1/2- and p38 MAPK-mediated signaling pathway in tachyzoite-triggered NETosis. N. caninum tachyzoites triggered NETosis in a time- and dose-dependent manner. Scanning electron microscopy analyses revealed NET structures being released by bovine PMN and entrapping tachyzoites. N. caninum-induced NET formation was found not to be NOX-, NE-, MPO-, PAD4-, ERK1/2-, and p38 MAP kinase-dependent process since inhibition of these enzymes led to a slight decrease of NET formation. CD11b was also identified as a neutrophil receptor being involved in NETosis. Furthermore, N. caninum-triggered NETosis depends on Ca++ influx as well as neutrophil metabolism since both the inhibition of SOCE and of P2Y2-mediated ATP uptake diminished NET formation. Host cell invasion assays indicated that PMN-derived NETosis hampered tachyzoites from active host cell invasion, thereby inhibiting further intracellular replication. NET formation represents an early and effective mechanism of response of the innate immune system, which might reduce initial infection rates during the acute phase of cattle neosporosis.
International journal for parasitology. Parasites and wildlife | 2015
Carlos Hermosilla; Liliana M. R. Silva; Rui Prieto; Sonja Kleinertz; Anja Taubert; Mónica A. Silva
Baleen and sperm whales, belonging to the Order Cetartiodactyla, are the largest and heaviest existent mammals in the world, collectively known as large whales. Large whales have been subjected to a variety of conservation means, which could be better monitored and managed if physiological and pathophysiological information, such as pathogen infections, could already be gathered from free-swimming animals instead of carcasses. Parasitic diseases are increasingly recognized for their profound influences on individual, population, and even ecosystem health. Furthermore, a number of parasite species have gained importance as opportunistic neozoan infections in the marine environment. Nonetheless, traditional approaches to study parasitic diseases have been impractical for large whales, since there is no current routine method for the capture and handling of these large animals and there is presently no practical method to obtain blood samples remotely from free-ranging whales. Therefore, we here not only intend to review the endo- and ectoparasite fauna of large whales but also to provide new insights in current available methods for gathering parasitological data by using non- or minimally invasive sampling techniques. We focus on methods, which will allow detailed parasitological studies to gain a broader knowledge on parasitoses affecting wild, free-swimming large whale populations.
Parasitology International | 2016
Tessa Carrau; Liliana M. R. Silva; David Pérez; Rocío Ruiz de Ybáñez; Anja Taubert; Carlos Hermosilla
The apicomplexan parasite Eimeria ovinoidalis is distributed worldwide and causes clinical ovine coccidiosis. As one of the most pathogenic species in sheep, the principal clinical sign is profuse diarrhoea in young animals, which leads to important economic losses in the ovine industry. We here aimed to establish an in vitro culture system for the development of E. ovinoidalis macromeronts, as no suitable systems are currently available for any ovine Eimeria species. Faecal samples containing more than 90% of E. ovinoidalis oocysts were collected from naturally infected lambs and ewes in Murcia Region (Spain). E. ovinoidalis oocysts were collected, left to sporulate in potassium dichromate and stored at 4°C until further studies were conducted. Moreover, a suitable excystation protocol was effectively established, resulting in the release of viable sporozoites, which were allowed to infect primary bovine umbilical vein endothelial cells (BUVEC) and permanent bovine colonic epithelial cells (BCEC). In vitro first merogony was successfully accomplished exclusively in BUVEC leading to macromeront formation (up to 100μm) and the release of fully developed and viable merozoites I stages. Given that we were able to establish a suitable in vitro system for the first merogony of such pathogenic Eimeria species in sheep, advances might be further made not only on studies regarding the control of ovine coccidiosis, such as drug screenings, but also on the better understanding of molecular parasite-host cell interactions as already demonstrated for other ruminant Eimeria species.
International journal for parasitology. Parasites and wildlife | 2017
R. Villagra-Blanco; Liliana M. R. Silva; A. Aguilella-Segura; I. Arcenillas-Hernández; C. Martínez-Carrasco; A. Seipp; U. Gärtner; R. Ruiz de Ybáñez; Anja Taubert; Carlos Hermosilla
Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear DNA decorated with histones and cytoplasmic peptides which antiparasitic properties have not previously been investigated in cetaceans. Polymorphonuclear neutrophils (PMN) were isolated from healthy bottlenose dolphins (Tursiops truncatus), and stimulated with Neospora caninum tachyzoites and the NETs-agonist zymosan. In vitro interactions of PMN with the tachyzoites resulted in rapid extrusion of NETs. For the demonstration and quantification of cetacean NETs, extracellular DNA was stained by using either Sytox Orange® or Pico Green®. Scanning electron microscopy (SEM) and fluorescence analyses demonstrated PMN-derived release of NETs upon exposure to tachyzoites of N. caninum. Co-localization studies of N. caninum induced cetacean NETs proved the presence of DNA adorned with histones (H1, H2A/H2B, H3, H4), neutrophil elastase (NE), myeloperoxidase (MPO) and pentraxin (PTX) confirming the molecular properties of mammalian NETosis. Dolphin-derived N. caninum-NETosis were efficiently suppressed by DNase I and diphenyleneiodonium (DPI) treatments. Our results indicate that cetacean-derived NETs represent an ancient, conserved and relevant defense effector mechanism of the host innate immune system against N. caninum and probably other related neozoan parasites circulating in the marine environment.
Journal of Veterinary Medicine | 2016
Carlos Hermosilla; Liliana M. R. Silva; Mauricio Navarro; Anja Taubert
The present study represents the first report on the gastrointestinal endoparasite fauna of a free-ranging “urban” colony of South American sea lions (Otaria flavescens) living within the city of Valdivia, Chile. A total of 40 individual faecal samples of South American sea lions were collected during the year 2012 within their natural habitat along the river Calle-Calle and in the local fish market of Valdivia. Coprological analyses applying sodium acetate acetic formalin methanol (SAF) technique, carbol fuchsin-stained faecal smears and Giardia/Cryptosporidium coproantigen ELISAs, revealed infections with 8 different parasites belonging to protozoan and metazoan taxa with some of them bearing anthropozoonotic potential. Thus, five of these parasites were zoonotic (Diphyllobothriidae gen. sp., Anisakidae gen. sp., Giardia, Cryptosporidium, and Balantidium). Overall, these parasitological findings included four new parasite records for Otaria flavescens, that is, Giardia, Cryptosporidium, Balantidium, and Otostrongylus. The current data serve as a baseline for future monitoring studies on anthropozoonotic parasites circulating in these marine mammals and their potential impact on public health.