Liliana Moreira Teixeira
University of Twente
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liliana Moreira Teixeira.
Biomaterials | 2012
Liliana Moreira Teixeira; Jan Feijen; Clemens van Blitterswijk; Pieter J. Dijkstra; Marcel Karperien
State-of-the-art bioactive hydrogels can easily and efficiently be formed by enzyme-catalyzed mild-crosslinking reactions in situ. Yet this cell-friendly and substrate-specific method remains under explored. Hydrogels prepared by using enzyme systems like tyrosinases, transferases and lysyl oxidases show interesting characteristics as dynamic scaffolds and as systems for controlled release. Increased attention is currently paid to hydrogels obtained via crosslinking of precursors by transferases or peroxidases as catalysts. Enzyme-mediated crosslinking has proven its efficiency and attention has now shifted to the development of enzymatically crosslinked hydrogels with higher degrees of complexity, mimicking extracellular matrices. Moreover, bottom-up approaches combining biocatalysts and self-assembly are being explored for the development of complex nano-scale architectures. In this review, the use of enzymatic crosslinking for the preparation of hydrogels as an innovative alternative to other crosslinking methods, such as the commonly used UV-mediated photo-crosslinking or physical crosslinking, will be discussed. Photo-initiator-based crosslinking may induce cytotoxicity in the formed gels, whereas physical crosslinking may lead to gels which do not have sufficient mechanical strength and stability. These limitations can be overcome using enzymes to form covalently crosslinked hydrogels. Herewith, we report the mechanisms involved and current applications, focusing on emerging strategies for tissue engineering and regenerative medicine.
Biomaterials | 2011
Sara C. Neves; Liliana Moreira Teixeira; Lorenzo Moroni; Rui L. Reis; Clemens van Blitterswijk; Natália M. Alves; Marcel Karperien; João F. Mano
Chitosan (CHT)/poly(ɛ-caprolactone) (PCL) blend 3D fiber-mesh scaffolds were studied as possible support structures for articular cartilage tissue (ACT) repair. Micro-fibers were obtained by wet-spinning of three different polymeric solutions: 100:0 (100CHT), 75:25 (75CHT) and 50:50 (50CHT) wt.% CHT/PCL, using a common solvent solution of 100 vol.% of formic acid. Scanning electron microscopy (SEM) analysis showed a homogeneous surface distribution of PCL. PCL was well dispersed throughout the CHT phase as analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. The fibers were folded into cylindrical moulds and underwent a thermal treatment to obtain the scaffolds. μCT analysis revealed an adequate porosity, pore size and interconnectivity for tissue engineering applications. The PCL component led to a higher fiber surface roughness, decreased the scaffolds swelling ratio and increased their compressive mechanical properties. Biological assays were performed after culturing bovine articular chondrocytes up to 21 days. SEM analysis, live-dead and metabolic activity assays showed that cells attached, proliferated, and were metabolically active over all scaffolds formulations. Cartilaginous extracellular matrix (ECM) formation was observed in all formulations. The 75CHT scaffolds supported the most neo-cartilage formation, as demonstrated by an increase in glycosaminoglycan production. In contrast to 100CHT scaffolds, ECM was homogenously deposited on the 75CHT and 50CHT scaffolds. Although mechanical properties of the 50CHT scaffold were better, the 75CHT scaffold facilitated better neo-cartilage formation.
Journal of Controlled Release | 2011
Rong Jin; Liliana Moreira Teixeira; Pieter J. Dijkstra; Clemens van Blitterswijk; Marcel Karperien; Jan Feijen
In this study, injectable hydrogels were prepared by horseradish peroxidase-mediated co-crosslinking of dextran-tyramine (Dex-TA) and heparin-tyramine (Hep-TA) conjugates and used as scaffolds for cartilage tissue engineering. The swelling and mechanical properties of these hydrogels can be easily controlled by the Dex-TA/Hep-TA weight ratio. When chondrocytes were incorporated in these gels, cell viability and proliferation were highest for gels with a 50/50 weight ratio of Dex-TA/Hep-TA. Moreover, these hydrogels induced an enhanced production of chondroitin sulfate and a more abundant presence of collagen as compared to Dex-TA hydrogels. The results indicate that injectable Dex-TA/Hep-TA hydrogels are promising scaffolds for cartilage regeneration.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Jeroen Leijten; Nicole Georgi; Liliana Moreira Teixeira; Clemens van Blitterswijk; Janine N. Post; Marcel Karperien
Significance Multipotent cells, such as mesenchymal stromal cells (MSCs), have the capacity to differentiate into cartilage-forming cells. Chondrocytes derived from MSCs obtain an epiphyseal cartilage-like phenotype, which turns into bone upon implantation via endochondral ossification. Here, we report that the chondrogenic fate of MSCs can be metabolically programmed by low oxygen tension to acquire an articular chondrocyte-like phenotype via mechanisms that resemble natural development. Our study identifies metabolic programming of stem cells by oxygen tension as a powerful tool to control cell fate, which may have broad applications for the way in which stem cells are now prepared for clinical use. Actively steering the chondrogenic differentiation of mesenchymal stromal cells (MSCs) into either permanent cartilage or hypertrophic cartilage destined to be replaced by bone has not yet been possible. During limb development, the developing long bone is exposed to a concentration gradient of oxygen, with lower oxygen tension in the region destined to become articular cartilage and higher oxygen tension in transient hypertrophic cartilage. Here, we prove that metabolic programming of MSCs by oxygen tension directs chondrogenesis into either permanent or transient hyaline cartilage. Human MSCs chondrogenically differentiated in vitro under hypoxia (2.5% O2) produced more hyaline cartilage, which expressed typical articular cartilage biomarkers, including established inhibitors of hypertrophic differentiation. In contrast, normoxia (21% O2) prevented the expression of these inhibitors and was associated with increased hypertrophic differentiation. Interestingly, gene network analysis revealed that oxygen tension resulted in metabolic programming of the MSCs directing chondrogenesis into articular- or epiphyseal cartilage-like tissue. This differentiation program resembled the embryological development of these distinct types of hyaline cartilage. Remarkably, the distinct cartilage phenotypes were preserved upon implantation in mice. Hypoxia-preconditioned implants remained cartilaginous, whereas normoxia-preconditioned implants readily underwent calcification, vascular invasion, and subsequent endochondral ossification. In conclusion, metabolic programming of MSCs by oxygen tension provides a simple yet effective mechanism by which to direct the chondrogenic differentiation program into either permanent articular-like cartilage or hypertrophic cartilage that is destined to become endochondral bone.
Biomaterials | 2012
Liliana Moreira Teixeira; Jeroen Leijten; J.W.H. Wennink; Anindita Chatterjea; Jan Feijen; Clemens van Blitterswijk; Pieter J. Dijkstra; Marcel Karperien
In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells.
PLOS ONE | 2012
Jeroen Leijten; Liliana Moreira Teixeira; Ellie Landman; Clemens van Blitterswijk; Marcel Karperien
Purpose Hypertrophic differentiation of growth plate chondrocytes induces angiogenesis which alleviates hypoxia normally present in cartilage. In the current study, we aim to determine whether alleviation of hypoxia is merely a downstream effect of hypertrophic differentiation as previously described or whether alleviation of hypoxia and consequent changes in oxygen tension mediated signaling events also plays an active role in regulating the hypertrophic differentiation process itself. Materials and Methods Fetal mouse tibiae (E17.5) explants were cultured up to 21 days under normoxic or hypoxic conditions (21% and 2.5% oxygen respectively). Tibiae were analyzed on growth kinetics, histology, gene expression and protein secretion. Results The oxygen level had a strong influence on the development of explanted fetal tibiae. Compared to hypoxia, normoxia increased the length of the tibiae, length of the hypertrophic zone, calcification of the cartilage and mRNA levels of hypertrophic differentiation-related genes e.g. MMP9, MMP13, RUNX2, COL10A1 and ALPL. Compared to normoxia, hypoxia increased the size of the cartilaginous epiphysis, length of the resting zone, calcification of the bone and mRNA levels of hyaline cartilage-related genes e.g. ACAN, COL2A1 and SOX9. Additionally, hypoxia enhanced the mRNA and protein expression of the secreted articular cartilage markers GREM1, FRZB and DKK1, which are able to inhibit hypertrophic differentiation. Conclusions Collectively our data suggests that oxygen levels play an active role in the regulation of hypertrophic differentiation of hyaline chondrocytes. Normoxia stimulates hypertrophic differentiation evidenced by the expression of hypertrophic differentiation related genes. In contrast, hypoxia suppresses hypertrophic differentiation of chondrocytes, which might be at least partially explained by the induction of GREM1, FRZB and DKK1 expression.
International Orthopaedics | 2014
Liliana Moreira Teixeira; Jennifer Patterson; Frank P. Luyten
The emerging field of tissue engineering reveals promising approaches for the repair and regeneration of skeletal tissues including the articular cartilage, bone, and the entire joint. Amongst the myriad of biomaterials available to support this strategy, hydrogels are highly tissue mimicking substitutes and thus of great potential for the regeneration of functional tissues. This review comprises an overview of the novel and most promising hydrogels for articular cartilage, osteochondral and bone defect repair. Chondro- and osteo-conductive and -instructive hydrogels are presented, highlighting successful combinations with inductive signals and cell sources. Moreover, advantages, drawbacks, and future perspectives of the role of hydrogels in skeletal regeneration are addressed, pointing out the current state of this rising approach.
Stem cell reports | 2017
Johanna Bolander; Wei Ji; Jeroen Leijten; Liliana Moreira Teixeira; Veerle Bloemen; Dennis Lambrechts; Malay Chaklader; Frank P. Luyten
Summary Clinical translation of cell-based strategies for regenerative medicine demands predictable in vivo performance where the use of sera during in vitro preparation inherently limits the efficacy and reproducibility. Here, we present a bioinspired approach by serum-free pre-conditioning of human periosteum-derived cells, followed by their assembly into microaggregates simultaneously primed with bone morphogenetic protein 2 (BMP-2). Pre-conditioning resulted in a more potent progenitor cell population, while aggregation induced osteochondrogenic differentiation, further enhanced by BMP-2 stimulation. Ectopic implantation displayed a cascade of events that closely resembled the natural endochondral process resulting in bone ossicle formation. Assessment in a critical size long-bone defect in immunodeficient mice demonstrated successful bridging of the defect within 4 weeks, with active contribution of the implanted cells. In short, the presented serum-free process represents a biomimetic strategy, resulting in a cartilage tissue intermediate that, upon implantation, robustly leads to the healing of a large long-bone defect.
Tissue Engineering Part A | 2010
Rong Jin; Liliana Moreira Teixeira; Pieter J. Dijkstra; Zhiyuan Zhong; Clemens van Blitterswijk; Marcel Karperien; Jan Feijen
Biomaterials | 2012
Liliana Moreira Teixeira; Suzanne Bijl; V.V. Pully; Cees Otto; Rong Jin; Jan Feijen; Clemens van Blitterswijk; Pieter J. Dijkstra; Marcel Karperien