Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lilla Zöllei is active.

Publication


Featured researches published by Lilla Zöllei.


Journal of Neurophysiology | 2011

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

B. T. Thomas Yeo; Fenna M. Krienen; Jorge Sepulcre; Mert R. Sabuncu; Danial Lashkari; Marisa Hollinshead; Joshua L. Roffman; Jordan W. Smoller; Lilla Zöllei; Jonathan R. Polimeni; Bruce Fischl; Hesheng Liu; Randy L. Buckner

Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.


Nature | 2014

Transcriptional landscape of the prenatal human brain

Jeremy A. Miller; Song Lin Ding; Susan M. Sunkin; Kimberly A. Smith; Lydia Ng; Aaron Szafer; Amanda Ebbert; Zackery L. Riley; Joshua J. Royall; Kaylynn Aiona; James M. Arnold; Crissa Bennet; Darren Bertagnolli; Krissy Brouner; Stephanie Butler; Shiella Caldejon; Anita Carey; Christine Cuhaciyan; Rachel A. Dalley; Nick Dee; Tim Dolbeare; Benjamin Facer; David Feng; Tim P. Fliss; Garrett Gee; Jeff Goldy; Lindsey Gourley; Benjamin W. Gregor; Guangyu Gu; Robert Howard

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001) | 2001

A variational framework for joint segmentation and registration

Anthony J. Yezzi; Lilla Zöllei; Tizna Kapur

Traditionally, segmentation and registration have been solved as two independent problems, even though it is often the case that the solution to one impacts the solution to the other. In this paper, we introduce a geometric, variational framework that uses active contours to simultaneously segment and register features from multiple images. The key observation is that multiple images may be segmented by evolving a single contour as well as the mappings of that contour into each image. To the best of our knowledge, this is the first attempt at interleaving segmentation and registration in such a framework.


Medical Image Analysis | 2003

A variational framework for integrating segmentation and registration through active contours

Anthony J. Yezzi; Lilla Zöllei; Tina Kapur

Traditionally, segmentation and registration have been solved as two independent problems, even though it is often the case that the solution to one impacts the solution to the other. In this paper, we introduce a geometric, variational framework that uses active contours to simultaneously segment and register features from multiple images. The key observation is that multiple images may be segmented by evolving a single contour as well as the mappings of that contour into each image.


international conference on computer vision | 2005

Efficient population registration of 3d data

Lilla Zöllei; Erik G. Learned-Miller; W. Eric L. Grimson; William M. Wells

We present a population registration framework that acts on large collections or populations of data volumes. The data alignment procedure runs in a simultaneous fashion, with every member of the population approaching the central tendency of the collection at the same time. Such a mechanism eliminates the need for selecting a particular reference frame a priori, resulting in a non-biased estimate of a digital atlas. Our algorithm adopts an affine congealing framework with an information theoretic objective function and is optimized via a gradient-based stochastic approximation process embedded in a multi-resolution setting. We present experimental results on both synthetic and real images.


computer vision and pattern recognition | 2001

2D-3D rigid registration of X-ray fluoroscopy and CT images using mutual information and sparsely sampled histogram estimators

Lilla Zöllei; W. Eric L. Grimson; Alexander Norbash; William M. Wells

The registration of pre-operative volumetric datasets to intra-operative two-dimensional images provides an improved way of verifying patient position and medical instrument location. In applications from orthopedics to neurosurgery, it has great value in maintaining up-to-date information about changes due to intervention. We propose a mutual information-based registration algorithm which establishes the proper alignment via a stochastic gradient ascent strategy. Our main contribution lies in estimating probability density measures of image intensities with a sparse histogramming method which could lead to potential speedup over existing registration procedures and deriving the gradient estimates required by the maximization procedure. Experimental results are presented on fluoroscopy and CT datasets of a real skull, and on a CT-derived dataset of a real skull, a plastic skull and a plastic lumbar spine segment.


IEEE Transactions on Medical Imaging | 2009

Combined Volumetric and Surface Registration

Gheorghe Postelnicu; Lilla Zöllei; Bruce Fischl

In this paper, we propose a novel method for the registration of volumetric images of the brain that optimizes the alignment of both cortical and subcortical structures. In order to achieve this, relevant geometrical information is extracted from a surface-based morph and diffused into the volume using the Navier operator of elasticity, resulting in a volumetric warp that aligns cortical folding patterns. This warp field is then refined with an intensity driven optical flow procedure that registers noncortical regions, while preserving the cortical alignment. The result is a combined surface and volume morph (CVS) that accurately registers both cortical and subcortical regions, establishing a single coordinate system suitable for the entire brain.


Brain and Cognition | 2010

A combined fMRI and DTI examination of functional language lateralization and arcuate fasciculus structure: Effects of degree versus direction of hand preference

Ruth E. Propper; Lauren J. O’Donnell; Stephen Whalen; Yanmei Tie; Isaiah Norton; Ralph O. Suarez; Lilla Zöllei; Alireza Radmanesh; Alexandra J. Golby

The present study examined the relationship between hand preference degree and direction, functional language lateralization in Brocas and Wernickes areas, and structural measures of the arcuate fasciculus. Results revealed an effect of degree of hand preference on arcuate fasciculus structure, such that consistently-handed individuals, regardless of the direction of hand preference, demonstrated the most asymmetric arcuate fasciculus, with larger left versus right arcuate, as measured by DTI. Functional language lateralization in Wernickes area, measured via fMRI, was related to arcuate fasciculus volume in consistent-left-handers only, and only in people who were not right hemisphere lateralized for language; given the small sample size for this finding, future investigation is warranted. Results suggest handedness degree may be an important variable to investigate in the context of neuroanatomical asymmetries.


Frontiers in Human Neuroscience | 2010

Direct Visualization of the Perforant Pathway in the Human Brain with Ex Vivo Diffusion Tensor Imaging

Jean C. Augustinack; Karl G. Helmer; Kristen E. Huber; Sita Kakunoori; Lilla Zöllei; Bruce Fischl

Ex vivo magnetic resonance imaging yields high resolution images that reveal detailed cerebral anatomy and explicit cytoarchitecture in the cerebral cortex, subcortical structures, and white matter in the human brain. Our data illustrate neuroanatomical correlates of limbic circuitry with high resolution images at high field. In this report, we have studied ex vivo medial temporal lobe samples in high resolution structural MRI and high resolution diffusion MRI. Structural and diffusion MRIs were registered to each other and to histological sections stained for myelin for validation of the perforant pathway. We demonstrate probability maps and fiber tracking from diffusion tensor data that allows the direct visualization of the perforant pathway. Although it is not possible to validate the DTI data with invasive measures, results described here provide an additional line of evidence of the perforant pathway trajectory in the human brain and that the perforant pathway may cross the hippocampal sulcus.


The Journal of Comparative Neurology | 2016

Comprehensive cellular-resolution atlas of the adult human brain

Song-Lin Ding; Joshua J. Royall; Susan M. Sunkin; Lydia Ng; Benjamin Facer; Phil Lesnar; Angie Guillozet-Bongaarts; Bergen McMurray; Aaron Szafer; Tim Dolbeare; Allison Stevens; Lee S. Tirrell; Thomas Benner; Shiella Caldejon; Rachel A. Dalley; Nick Dee; Christopher Lau; Julie Nyhus; Melissa Reding; Zackery L. Riley; David Sandman; Elaine Shen; Andre van der Kouwe; Ani Varjabedian; Michelle Write; Lilla Zöllei; Chinh Dang; James A. Knowles; Christof Koch; John Phillips

Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016.

Collaboration


Dive into the Lilla Zöllei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William M. Wells

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Ellen Grant

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge