Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lilly Schwieler is active.

Publication


Featured researches published by Lilly Schwieler.


Biological Psychiatry | 2004

Endogenous kynurenic acid disrupts prepulse inhibition

Sophie Erhardt; Lilly Schwieler; Carolina Emanuelsson; Mark A. Geyer

BACKGROUND Recent studies show that endogenous levels of kynurenic acid (KYNA) are increased in the cerebrospinal fluid of schizophrenic patients. Prepulse inhibition (PPI) of the acoustic startle reflex is an operational measure of sensorimotor gating that is reduced in neuropsychiatric disorders, such as schizophrenia. Previous studies show that administration of N-methyl-D-aspartate (NMDA) receptor antagonists, such as phencyclidine or MK-801, leads to deficits in sensorimotor gating that mimic those observed in schizophrenic patients. METHODS The present study examined the effects of the endogenous NMDA receptor antagonist KYNA on startle and PPI in rats. Elevation of endogenous brain levels of KYNA was achieved through intraperitoneal (IP) administration of kynurenine (100 mg/kg), the precursor of KYNA, or by intravenous administration of PNU 156561A (10 mg/kg). RESULTS A fourfold increase in brain KYNA levels, as induced by kynurenine or PNU 156561A, significantly reduced PPI. There were no differences in startle magnitudes between control rats and drug-treated rats. The disruption of PPI was restored by administration of the antipsychotic drugs haloperidol (.2 mg/kg, IP) or clozapine (7.5 mg/kg, IP). CONCLUSIONS The present results suggest that brain KYNA serves as an endogenous modulator of PPI and are consistent with the hypothesis that KYNA contributes to the pathophysiology of schizophrenia.


Journal of Neural Transmission | 2005

Prostaglandin-mediated control of rat brain kynurenic acid synthesis--opposite actions by COX-1 and COX-2 isoforms.

Lilly Schwieler; Sophie Erhardt; C. Erhardt; Göran Engberg

Summary.Kynurenic acid (KYNA), an endogenous glutamate-receptor antagonist preferentially blocking NMDA-receptors, has analgesic properties and has also been implicated in the pathophysiology of schizophrenia. Recently, the non-steroid anti-inflammatory drug (NSAID) diclofenac was found to increase rat brain KYNA. Here, we analyze whether cyclooxygenase (COX)-1 or COX-2 modulate the levels of rat brain KYNA. The non-selective COX-inhibitor diclofenac (50 mg/kg, i.p.) or indomethacin (50 mg/kg, i.p.), a non-selective inhibitor with a preferential selectivity for COX-1, produced an elevation in brain KYNA. In contrast, the COX-2 selective inhibitors parecoxib (25 mg/kg, i.p.) or meloxicam (5 mg/kg, i.p.) decreased brain KYNA. Both elevation and lowering of brain KYNA by indomethacin or parecoxib, respectively, were prevented by the prostaglandin E1/E2 agonist misoprostol (1 mg/kg, s.c.). It is proposed that increased brain KYNA formation induced by NSAIDs displaying an inhibitory action on COX-1 contribute to their analgesic efficacy as well as to their psychiatric side effects.


Life Sciences | 2008

Clozapine interacts with the glycine site of the NMDA receptor: Electrophysiological studies of dopamine neurons in the rat ventral tegmental area

Lilly Schwieler; Klas R. Linderholm; Linda K. Nilsson-Todd; Sophie Erhardt; Göran Engberg

Clozapine has a remarkable efficacy in treatment-resistant schizophrenia and is one of the most effective antipsychotic drugs used today. The clinical effects of clozapine are suggested to be related to a unique interaction with a variety of receptor systems, including the glutamatergic receptors. Kynurenic acid (KYNA) is an endogenous blocker of alpha7 nicotinic receptors and a glutamate-receptor antagonist, preferentially blocking N-methyl-D-aspartate (NMDA) receptors. In the present in vivo electrophysiological study, changes in endogenous concentration of brain KYNA were utilized to analyze an interaction between clozapine and the glycine site of NMDA receptors. In control rats intravenously administered clozapine (0.078-10 mg/kg) increased the firing rate and the burst firing activity of dopamine (DA) neurons in the ventral tegmental area (VTA). Pretreatment with indomethacin (50 mg/kg, i.p., 1-3.5 h), a cyclooxygenase (COX)-inhibitor with a preferential selectivity for COX-1, which produced a significant elevation in brain KYNA levels, reversed the excitatory action of clozapine into an inhibitory response. In contrast, pretreatment with the COX-2 selective inhibitor parecoxib (25 mg/kg, i.v., 1-1.5 h) decreased brain KYNA formation and furthermore, clearly potentiated the excitatory effect of clozapine. Our results show that endogenous levels of brain KYNA are of importance for the response of clozapine on VTA DA neurons. On the basis of the present data we propose that clozapine is able to interact with glutamatergic mechanisms, via actions at the NMDA/glycine receptor.


International Journal of Tryptophan Research | 2014

Imbalanced kynurenine pathway in schizophrenia.

Magdalena E. Kegel; Maria Bhat; Elisabeth Skogh; Martin Samuelsson; Kristina Lundberg; Marja-Liisa Dahl; Carl Sellgren; Lilly Schwieler; Göran Engberg; Sophie Erhardt

Several studies suggest a role for kynurenic acid (KYNA) in the pathophysiology of schizophrenia. It has been proposed that increased brain KYNA levels in schizophrenia result from a pathological shift in the kynurenine pathway toward enhanced KYNA formation, away from the other branch of the pathway leading to quinolinic acid (QUIN). Here we investigate the levels of QUIN in cerebrospinal fluid (CSF) of patients with schizophrenia and healthy controls, and relate those to CSF levels of KYNA and other kynurenine metabolites from the same individuals. CSF QUIN levels from stable outpatients treated with olanzapine (n = 22) and those of controls (n = 26) were analyzed using liquid chromatography-mass spectrometry. No difference in CSF QUIN levels between patients and controls was observed (20.6 ± 1.5 nM vs. 18.2 ± 1.1 nM, P = 0.36). CSF QUIN was positively correlated to CSF kynurenine and CSF KYNA in patients but not in controls. The CSF QUIN/KYNA ratio was lower in patients than in controls (P = 0.027). In summary, the present study offers support for an over-activated and imbalanced kynurenine pathway, favoring the production of KYNA over QUIN in patients with schizophrenia.


Journal of Psychiatry & Neuroscience | 2012

Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls.

Maria Holtze; Peter Saetre; Göran Engberg; Lilly Schwieler; Thomas Werge; Ole A. Andreassen; Håkan Hall; Lars Terenius; Ingrid Agartz; Erik G. Jönsson; Martin Schalling; Sophie Erhardt

BACKGROUND Patients with schizophrenia show increased brain and cerebrospinal fluid (CSF) concentrations of the endogenous N-methyl-D-aspartate receptor antagonist kynurenic acid (KYNA). This compound is an end-metabolite of the kynurenine pathway, and its formation indirectly depends on the activity of kynurenine 3-monooxygenase (KMO), the enzyme converting kynurenine to 3-hydroxykynurenine. METHODS We analyzed the association between KMO gene polymorphisms and CSF concentrations of KYNA in patients with schizophrenia and healthy controls. Fifteen single nucleotide polymorphisms (SNPs) were selected covering KMO and were analyzed in UNPHASED. RESULTS We included 17 patients with schizophrenia and 33 controls in our study. We found an association between a KMO SNP (rs1053230), encoding an amino acid change of potential importance for substrate interaction, and CSF concentrations of KYNA. LIMITATIONS Given the limited sample size, the results are tentative until replication. CONCLUSION Our results suggest that the nonsynonymous KMO SNP rs1053230 influences CSF concentrations of KYNA.


The International Journal of Neuropsychopharmacology | 2009

Elevated levels of kynurenic acid change the dopaminergic response to amphetamine: implications for schizophrenia

Sara K. Olsson; Alexandra S. Andersson; Klas R. Linderholm; Maria Holtze; Linda K. Nilsson-Todd; Lilly Schwieler; Elin Olsson; Kerstin Larsson; Göran Engberg; Sophie Erhardt

Kynurenic acid (KYNA) is an endogenous compound implicated in the pathophysiology of schizophrenia. This tryptophan metabolite antagonizes both the N-methyl-D-aspartate (NMDA) receptors and the nicotinic alpha7* receptors at micromolar concentrations. In the present study the effects of amphetamine on dopamine (DA) release in the nucleus accumbens and on firing of DA neurons in the ventral tegmental area (VTA) were investigated in rats treated with kynurenine, the precursor of KYNA, in order to elevate brain KYNA levels. In rats subchronically treated with kynurenine (90 mg/kg x d for 6 d via osmotic minipumps, resulting in a 2-fold increase in whole-brain KYNA), the amphetamine-induced (2 mg/kg i.p.) increase in accumbal DA release was clearly enhanced compared to controls. Furthermore, subchronic treatment with kynurenine reduced the inhibitory action of amphetamine (0.2-25.6 mg/kg i.v.) on firing rate and burst firing activity of VTA DA neurons. A single dose of kynurenine (5 mg/kg s.c., 60 min, resulting in a 3-fold increase in whole-brain KYNA) did not alter the amphetamine-induced effects on DA neurotransmission compared to control rats. Present data are in agreement with the increased striatal DA release by amphetamine as observed by brain-imaging studies in patients with schizophrenia. Thus, subchronic elevation of rat brain KYNA, may rationally serve as an animal model similar to a pathophysiological condition of schizophrenia. It is proposed that the reduced responsivity of VTA DA neurons to the inhibitory action of amphetamine observed in rats with subchronically elevated KYNA levels may partly account for the increase in terminal DA release.


Journal of Neuroscience Research | 2008

Induction of the kynurenine pathway by neurotropic influenza a virus infection

Maria Holtze; Linnéa Asp; Lilly Schwieler; Göran Engberg; Håkan Karlsson

Glutamatergic NMDA (N‐methyl D‐aspartate) receptors play a critical role in brain development and neurotransmission. Kynurenic acid, an end product of tryptophan degradation along the kynurenine pathway, is an endogenous NMDA receptor antagonist. In the present study, the effects of neurotropic influenza A virus infection on the kynurenine pathway were investigated in mouse brain primary cell cultures and in mouse brain after infection on day 3 of postnatal life. Altered levels of transcripts encoding several key enzymes of the kynurenine pathway were observed in infected neuron and glial cell cultures. In vivo, changes in the levels of such transcripts in brain were observed on postnatal days 7 and 13 but not on day 24. On postnatal day 13, infiltrating T lymphocytes and increased levels of kynurenic acid were observed in the brains of the infected animals. Taken together, the present results indicate that central nervous system infections during early life can activate the entire kynurenine pathway. Such activation is likely to result in the generation of several bioactive metabolites, as supported by our finding of a transient increase of kynurenic acid. In light of its antagonistic actions on the NMDA receptor, kynurenic acid can potentially link infections with glutamatergic signaling in the developing brain.


Neuropsychopharmacology | 2003

Inhibitory action of clozapine on rat ventral tegmental area dopamine neurons following increased levels of endogenous kynurenic acid

Lilly Schwieler; Sophie Erhardt

The mode of action by which the atypical antipsychotic drug clozapine exerts its superior efficacy to ameliorate both positive and negative symptoms is still unknown. In the present in vivo electrophysiological study, we investigate the effects of haloperidol (a typical antipsychotic drug) and clozapine on ventral tegmental area (VTA) dopamine (DA) neurons in a situation of hyperdopaminergic activity in order to mimic tentatively a condition similar to that seen in schizophrenia. Increased DA transmission was induced by elevating endogenous levels of the N-methyl-D-aspartate receptor and α7* nicotinic receptor antagonist kynurenic acid (KYNA; by means of PNU 156561A, 40 mg /kg, i.v.). In control rats, i.v. administered haloperidol (0.05–0.8 mg/kg) or clozapine (1.25–10 mg/kg) was associated with increased firing rate and burst firing activity of VTA DA neurons. However, in rats displaying hyperdopaminergia (induced by elevated levels of KYNA), the effects of clozapine on VTA DA neurons were converted into pure inhibitory responses, including decrease in burst firing activity. In contrast, haloperidol still produced an excitatory action on VTA DA neurons in rats with elevated levels of endogenous brain KYNA. The results of the present study suggest that clozapine facilitates or inhibits VTA DA neurotransmission, depending on brain concentration of KYNA. Such an effect of clozapine may be related to its unique effect in also ameliorating negative symptoms of schizophrenia.


Molecular Psychiatry | 2017

Lower levels of the glial cell marker TSPO in drug-naive first-episode psychosis patients as measured using PET and |[lsqb]|11C|[rsqb]|PBR28

K. Collste; P Plavén-Sigray; Helena Fatouros-Bergman; P Victorsson; M Schain; A Forsberg; N Amini; S Aeinehband; Lars Farde; Lena Flyckt; Göran Engberg; Sophie Erhardt; Simon Cervenka; Lilly Schwieler; Fredrik Piehl; Ingrid Agartz; Anna Malmqvist; Hedberg M; Funda Orhan; Christer Halldin

Several lines of evidence are indicative of a role for immune activation in the pathophysiology of schizophrenia. Nevertheless, studies using positron emission tomography (PET) and radioligands for the translocator protein (TSPO), a marker for glial activation, have yielded inconsistent results. Whereas early studies using a radioligand with low signal-to-noise in small samples showed increases in patients, more recent studies with improved methodology have shown no differences or trend-level decreases. Importantly, all patients investigated thus far have been on antipsychotic medication, and as these compounds may dampen immune cell activity, this factor limits the conclusions that can be drawn. Here, we examined 16 drug-naive, first-episode psychosis patients and 16 healthy controls using PET and the TSPO radioligand [11C]PBR28. Gray matter (GM) volume of distribution (VT) derived from a two-tissue compartmental analysis with arterial input function was the main outcome measure. Statistical analyses were performed controlling for both TSPO genotype, which is known to affect [11C]PBR28 binding, and gender. There was a significant reduction of [11C]PBR28 VT in patients compared with healthy controls in GM as well as in secondary regions of interest. No correlation was observed between GM VT and clinical or cognitive measures after correction for multiple comparisons. The observed decrease in TSPO binding suggests reduced numbers or altered function of immune cells in brain in early-stage schizophrenia.


Life Sciences | 2003

The anaesthetic agent propofol interacts with GABAB-receptors: an electrophysiological study in rat

Lilly Schwieler; Dick Delbro; Göran Engberg; Sophie Erhardt

The mode of action by which propofol induces anaesthesia is not fully understood, although several studies suggest that the compound acts via potentiation of brain GABA(A)-receptors. The aim of the present study is to investigate a putative GABA(B)-receptor agonistic action of propofol. For this purpose the action of propofol on a GABA-receptor mediated regulation of dopamine neurons was analyzed with extracellular single unit recordings of dopaminergic neurons of the substantia nigra in chloral hydrate anaesthetized rats. Intravenous administration of propofol (1-16 mg/kg) was found to dose-dependently decrease the firing rate and burst firing activity of nigral DA neurons. These effects by propofol were effectively antagonized by pretreatment with the selective GABA(B)-receptor antagonist CGP 35348 (200 mg/kg, i.v.) but not by pretreatment with the GABA(A)-receptor antagonist picrotoxin (4.5 mg/kg, i.v.). It is proposed that an activation of central GABA(B)-receptors may, at least partially, contribute to the anesthetic properties of propofol.

Collaboration


Dive into the Lilly Schwieler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge