Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lily Y. Young is active.

Publication


Featured researches published by Lily Y. Young.


Applied and Environmental Microbiology | 2003

Anaerobic Transformation of Alkanes to Fatty Acids by a Sulfate-Reducing Bacterium, Strain Hxd3

Chi Ming So; Craig D. Phelps; Lily Y. Young

ABSTRACT Strain Hxd3, an alkane-degrading sulfate reducer previously isolated and described by Aeckersberg et al. (F. Aeckersberg, F. Bak, and F. Widdel, Arch. Microbiol. 156:5-14, 1991), was studied for its alkane degradation mechanism by using deuterium and 13C-labeled compounds. Deuterated fatty acids with even numbers of C atoms (C-even) and 13C-labeled fatty acids with odd numbers of C atoms (C-odd) were recovered from cultures of Hxd3 grown on perdeuterated pentadecane and [1,2-13C2]hexadecane, respectively, underscoring evidence that C-odd alkanes are transformed to C-even fatty acids and vice versa. When Hxd3 was grown on unlabeled hexadecane in the presence of [13C]bicarbonate, the resulting 15:0 fatty acid, which was one carbon shorter than the alkane, incorporated a 13C label to form its carboxyl group. The same results were observed when tetradecane, pentadecane, and perdeuterated pentadecane were used as the substrates. These observations indicate that the initial attack of alkanes includes both carboxylation with inorganic bicarbonate and the removal of two carbon atoms from the alkane chain terminus, resulting in a fatty acid one carbon shorter than the original alkane. The removal of two terminal carbon atoms is further evidenced by the observation that the [1,2-13C2]hexadecane-derived fatty acids contained either two 13C labels located exclusively at their acyl chain termini or none at all. Furthermore, when perdeuterated pentadecane was used as the substrate, the 14:0 and 16:0 fatty acids formed both carried the same numbers of deuterium labels, while the latter was not deuterated at its carboxyl end. These observations provide further evidence that the 14:0 fatty acid was initially formed from perdeuterated pentadecane, while the 16:0 fatty acid was produced after chain elongation of the former fatty acid with nondeuterated carbon atoms. We propose that strain Hxd3 anaerobically transforms an alkane to a fatty acid through a mechanism which includes subterminal carboxylation at the C-3 position of the alkane and elimination of the two adjacent terminal carbon atoms.


Environmental Microbiology | 2012

The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation

Amy V. Callaghan; B.E.L. Morris; Inês A. C. Pereira; Michael J. McInerney; Rachel N. Austin; John T. Groves; J.J. Kukor; Joseph M. Suflita; Lily Y. Young; Gerben J. Zylstra; Boris Wawrik

Desulfatibacillum alkenivorans AK-01 serves as a model organism for anaerobic alkane biodegradation because of its distinctive biochemistry and metabolic versatility. The D. alkenivorans genome provides a blueprint for understanding the genetic systems involved in alkane metabolism including substrate activation, CoA ligation, carbon-skeleton rearrangement and decarboxylation. Genomic analysis suggested a route to regenerate the fumarate needed for alkane activation via methylmalonyl-CoA and predicted the capability for syntrophic alkane metabolism, which was experimentally verified. Pathways involved in the oxidation of alkanes, alcohols, organic acids and n-saturated fatty acids coupled to sulfate reduction and the ability to grow chemolithoautotrophically were predicted. A complement of genes for motility and oxygen detoxification suggests that D. alkenivorans may be physiologically adapted to a wide range of environmental conditions. The D. alkenivorans genome serves as a platform for further study of anaerobic, hydrocarbon-oxidizing microorganisms and their roles in bioremediation, energy recovery and global carbon cycling.


Biodegradation | 1999

Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments

Craig D. Phelps; Lily Y. Young

We examined the extent of biodegradation of benzene, toluene, ethylbenzene and the three isomers of xylene (BTEX) as a mixture and from gasoline in four different sediments: the New York/New Jersey Harbor estuary (polluted); Tuckerton, N.J. (pristine); Onondaga Lake, N.Y. (polluted) and Blue Mtn. Lake, N.Y. (pristine). Enrichment cultures were established with each sediment using denitrifying, sulfidogenic, methanogenic and iron reducing media, as well as site water. BTEX loss, as measured by GC-FID, was extensive in the sediments which had a long history of pollution, with all compounds being utilized within 21–91 days in the most active cultures, and was very slight or non-existent in the pristine sediments. Also, the pattern of loss was different under the various reducing conditions within each sediment and between sediments. For example benzene loss was only observed in sulfidogenic cultures from the NY/NJ Harbor sediments while toluene was degraded under all redox conditions. The loss of BTEX was correlated to the reduction of the various electron acceptors. In cultures amended with gasoline the degradation was much slower and incomplete. These results show that the fate of the different BTEX components in anoxic sediments is dependent on the prevailing redox conditions as well as on the characteristics and pollution history of the sediment.


Applied and Environmental Microbiology | 2006

Comparison of Mechanisms of Alkane Metabolism under Sulfate-Reducing Conditions among Two Bacterial Isolates and a Bacterial Consortium

Amy V. Callaghan; Lisa M. Gieg; Kevin G. Kropp; Joseph M. Suflita; Lily Y. Young

ABSTRACT Recent studies have demonstrated that fumarate addition and carboxylation are two possible mechanisms of anaerobic alkane degradation. In the present study, we surveyed metabolites formed during growth on hexadecane by the sulfate-reducing isolates AK-01 and Hxd3 and by a mixed sulfate-reducing consortium. The cultures were incubated with either protonated or fully deuterated hexadecane; the sulfate-reducing consortium was also incubated with [1,2-13C2]hexadecane. All cultures were extracted, silylated, and analyzed by gas chromatography-mass spectrometry. We detected a suite of metabolites that support a fumarate addition mechanism for hexadecane degradation by AK-01, including methylpentadecylsuccinic acid, 4-methyloctadecanoic acid, 4-methyloctadec-2,3-enoic acid, 2-methylhexadecanoic acid, and tetradecanoic acid. By using d34-hexadecane, mass spectral evidence strongly supporting a carbon skeleton rearrangement of the first intermediate, methylpentadecylsuccinic acid, was demonstrated for AK-01. Evidence indicating hexadecane carboxylation was not found in AK-01 extracts but was observed in Hxd3 extracts. In the mixed sulfate-reducing culture, however, metabolites consistent with both fumarate addition and carboxylation mechanisms of hexadecane degradation were detected, which demonstrates that multiple alkane degradation pathways can occur simultaneously within distinct anaerobic communities. Collectively, these findings underscore that fumarate addition and carboxylation are important alkane degradation mechanisms that may be widespread among phylogenetically and/or physiologically distinct microorganisms.


Applied and Environmental Microbiology | 2005

13C-Carrier DNA Shortens the Incubation Time Needed To Detect Benzoate-Utilizing Denitrifying Bacteria by Stable-Isotope Probing

E. Gallagher; L. McGuinness; Craig D. Phelps; Lily Y. Young; Lee J. Kerkhof

ABSTRACT The active bacterial community able to utilize benzoate under denitrifying conditions was elucidated in two coastal sediments using stable-isotope probing (SIP) and nosZ gene amplification. The SIP method employed samples from Norfolk Harbor, Virginia, and a Long-Term Ecosystem Observatory (no. 15) off the coast of Tuckerton, New Jersey. The SIP method was modified by use of archaeal carrier DNA in the density gradient separation. The carrier DNA significantly reduced the incubation time necessary to detect the 13C-labeled bacterial DNA from weeks to hours in the coastal enrichments. No denitrifier DNA was found to contaminate the archaeal 13C-carrier when [12C]benzoate was used as a substrate in the sediment enrichments. Shifts in the activity of the benzoate-utilizing denitrifying population could be detected throughout a 21-day incubation. These results suggest that temporal analysis using SIP can be used to illustrate the initial biodegrader(s) in a bacterial population and to document the cross-feeding microbial community.


FEMS Microbiology Ecology | 2004

A novel arsenate respiring isolate that can utilize aromatic substrates

Anbo Liu; Elizabeth Garcia-Dominguez; E.D Rhine; Lily Y. Young

A novel anaerobic bacterium was isolated from the sediment of Onondaga Lake (Syracuse, NY), which can use arsenate [As(V)] as a respiratory electron acceptor. The isolate, designated strain Y5 is a spore-forming, motile rod, with lateral flagella. It is Gram-negative though it phylogenetically falls within the low G + C Gram-positive organisms. In addition to the more usual electron donors such as lactate and succinate, strain Y5 also can use H(2)+ CO(2) chemoautotrophically and metabolize aromatic compounds such as syringic acid, ferulic acid, phenol, benzoate and toluene, coupled to arsenate reduction. Aside from As(V), nitrate, sulfate, thiosulfate and Fe(III) can also serve as electron acceptors. Based on 16S rDNA phylogeny and its physiological characteristics, strain Y5 was identified as most closely related to the genus Desulfosporosinus. The ability of microorganisms to reduce arsenate for respiration appears to be widely distributed and may be relevant in the biogeochemical cycling of arsenic in environments containing mixed contaminants.


Biodegradation | 2000

Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium.

Xiaoming Zhang; Elise R. Sullivan; Lily Y. Young

Naphthalene was used as a model compound in order to study the anaerobic pathway of polycyclic aromatic hydrocarbon degradation. Previously we had determined that carboxylation is an initial step for anaerobic metabolism of naphthalene, but no other intermediate metabolites were identified (Zhang & Young 1997). In the present study we further elucidate the pathway with the identification of six novel naphthalene metabolites detected when cultures were fed naphthalene in the presence of its analog 1-fluoronaphthalene. Results from cultures supplemented with either deuterated naphthalene or non-deuterated naphthalene plus [13C]bicarbonate confirm that the metabolites originated from naphthalene. Three of these metabolites were identified by comparison with the following standards: 2-naphthoic acid (2-NA), 5,6,7,8-tetrahydro-2-naphthoic acid, and decahydro-2-naphthoic acid. The presence of 5,6,7,8-tetrahydro-2-NA as a metabolite of naphthalene degradation indicates that the first reduction reaction occurs at the unsubstituted ring, rather than the carboxylated ring. The overall results suggest that after the initial carboxylation of naphthalene, 2-NA is sequentially reduced to decahydro-2-naphthoic acid through 5 hydrogenation reactions, each of which eliminated one double bond. Incorporation of deuterium atoms from D2O into 5,6,7,8-tetrahydro-2-naphthoic acid suggests that water is the proton source for hydrogenation.


FEMS Microbiology Ecology | 2008

Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments

Elizabeth Garcia-Dominguez; Adam C. Mumford; Elizabeth Danielle Rhine; Amber Paschal; Lily Y. Young

Arsenic oxidation is recognized as being mediated by both heterotrophic and chemoautotrophic microorganisms. Enrichment cultures were established to determine whether chemoautotrophic microorganisms capable of oxidizing arsenite As(III) to arsenate As(V) are present in selected contaminated but nonextreme environments. Three new organisms, designated as strains OL-1, S-1 and CL-3, were isolated and found to oxidize 10 mM arsenite to arsenate under aerobic conditions using CO2-bicarbonate (CO2/HCO3-) as a carbon source. Based on 16S rRNA gene sequence analyses, strain OL-1 was 99% most closely related to the genus Ancylobacter, strain S-1 was 99% related to Thiobacillus and strain CL-3 was 98% related to the genus Hydrogenophaga. The isolates are facultative autotrophs and growth of isolated strains on different inorganic electron donors other than arsenite showed that all three had a strong preference for several sulfur species, while CL-3 was also able to grow on ammonium and nitrite. The RuBisCO Type I (cbbL) gene was positively amplified and sequenced in strain CL-3, and the Type II (cbbM) gene was detected in strains OL-1 and S-1, supporting the autotrophic nature of the organisms.


Applied and Environmental Microbiology | 2009

Anaerobic Biodegradation of n-Hexadecane by a Nitrate-Reducing Consortium

Amy V. Callaghan; Meghan Tierney; Craig D. Phelps; Lily Y. Young

ABSTRACT Nitrate-reducing enrichments, amended with n-hexadecane, were established with petroleum-contaminated sediment from Onondaga Lake. Cultures were serially diluted to yield a sediment-free consortium. Clone libraries and denaturing gradient gel electrophoresis analysis of 16S rRNA gene community PCR products indicated the presence of uncultured alpha- and betaproteobacteria similar to those detected in contaminated, denitrifying environments. Cultures were incubated with H34-hexadecane, fully deuterated hexadecane (d34-hexadecane), or H34-hexadecane and NaH13CO3. Gas chromatography-mass spectrometry analysis of silylated metabolites resulted in the identification of [H29]pentadecanoic acid, [H25]tridecanoic acid, [1-13C]pentadecanoic acid, [3-13C]heptadecanoic acid, [3-13C]10-methylheptadecanoic acid, and d27-pentadecanoic, d25-, and d24-tridecanoic acids. The identification of these metabolites suggests a carbon addition at the C-3 position of hexadecane, with subsequent β-oxidation and transformation reactions (chain elongation and C-10 methylation) that predominantly produce fatty acids with odd numbers of carbons. Mineralization of [1-14C]hexadecane was demonstrated based on the recovery of 14CO2 in active cultures.


Applied and Environmental Microbiology | 2008

Identification of Critical Members in a Sulfidogenic Benzene-Degrading Consortium by DNA Stable Isotope Probing

A. R. Oka; Craig D. Phelps; L. M. McGuinness; A. Mumford; Lily Y. Young; Lee J. Kerkhof

ABSTRACT Stable isotope probing (SIP) was used to identify the active members in a benzene-degrading sulfidogenic consortium. SIP-terminal restriction fragment length polymorphism analysis indicated that a 270-bp peak incorporated the majority of the 13C label and is a sequence closely related to that of clone SB-21 (GenBank accession no. AF029045). This target may be an important biomarker for anaerobic benzene degradation in the field.

Collaboration


Dive into the Lily Y. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl J. Rockne

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge