Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lim Heo is active.

Publication


Featured researches published by Lim Heo.


Nucleic Acids Research | 2013

GalaxyRefine: protein structure refinement driven by side-chain repacking

Lim Heo; Hahnbeom Park; Chaok Seok

The quality of model structures generated by contemporary protein structure prediction methods strongly depends on the degree of similarity between the target and available template structures. Therefore, the importance of improving template-based model structures beyond the accuracy available from template information has been emphasized in the structure prediction community. The GalaxyRefine web server, freely available at http://galaxy.seoklab.org/refine, is based on a refinement method that has been successfully tested in CASP10. The method first rebuilds side chains and performs side-chain repacking and subsequent overall structure relaxation by molecular dynamics simulation. According to the CASP10 assessment, this method showed the best performance in improving the local structure quality. The method can improve both global and local structure quality on average, when used for refining the models generated by state-of-the-art protein structure prediction servers.


Nucleic Acids Research | 2012

GalaxyWEB server for protein structure prediction and refinement

Junsu Ko; Hahnbeom Park; Lim Heo; Chaok Seok

Three-dimensional protein structures provide invaluable information for understanding and regulating biological functions of proteins. The GalaxyWEB server predicts protein structure from sequence by template-based modeling and refines loop or terminus regions by ab initio modeling. This web server is based on the method tested in CASP9 (9th Critical Assessment of techniques for protein Structure Prediction) as ‘Seok-server’, which was assessed to be among top performing template-based modeling servers. The method generates reliable core structures from multiple templates and re-builds unreliable loops or termini by using an optimization-based refinement method. In addition to structure prediction, a user can also submit a refinement only job by providing a starting model structure and locations of loops or termini to refine. The web server can be freely accessed at http://galaxy.seoklab.org/.


Nucleic Acids Research | 2015

GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization

Hasup Lee; Lim Heo; Myeong Sup Lee; Chaok Seok

Protein–peptide interactions are involved in a wide range of biological processes and are attractive targets for therapeutic purposes because of their small interfaces. Therefore, effective protein–peptide docking techniques can provide the basis for potential therapeutic applications by enabling an atomic-level understanding of protein interactions. With the increasing number of protein–peptide structures deposited in the protein data bank, the prediction accuracy of protein-peptide docking can be enhanced by utilizing the information provided by the database. The GalaxyPepDock web server, which is freely accessible at http://galaxy.seoklab.org/pepdock, performs similarity-based docking by finding templates from the database of experimentally determined structures and building models using energy-based optimization that allows for structural flexibility. The server can therefore effectively model the structural differences between the template and target protein–peptide complexes. The performance of GalaxyPepDock is superior to those of the other currently available web servers when tested on the PeptiDB set and on recently released complex structures. When tested on the CAPRI target 67, GalaxyPepDock generates models that are more accurate than the best server models submitted during the CAPRI blind prediction experiment.


Journal of Computational Chemistry | 2011

LigDockCSA: protein-ligand docking using conformational space annealing.

Woong-Hee Shin; Lim Heo; Juyong Lee; Junsu Ko; Chaok Seok; Jooyoung Lee

Protein–ligand docking techniques are one of the essential tools for structure‐based drug design. Two major components of a successful docking program are an efficient search method and an accurate scoring function. In this work, a new docking method called LigDockCSA is developed by using a powerful global optimization technique, conformational space annealing (CSA), and a scoring function that combines the AutoDock energy and the piecewise linear potential (PLP) torsion energy. It is shown that the CSA search method can find lower energy binding poses than the Lamarckian genetic algorithm of AutoDock. However, lower‐energy solutions CSA produced with the AutoDock energy were often less native‐like. The loophole in the AutoDock energy was fixed by adding a torsional energy term, and the CSA search on the refined energy function is shown to improve the docking performance. The performance of LigDockCSA was tested on the Astex diverse set which consists of 85 protein–ligand complexes. LigDockCSA finds the best scoring poses within 2 Å root‐mean‐square deviation (RMSD) from the native structures for 84.7% of the test cases, compared to 81.7% for AutoDock and 80.5% for GOLD. The results improve further to 89.4% by incorporating the conformational entropy.


Nucleic Acids Research | 2014

GalaxySite: ligand-binding-site prediction by using molecular docking

Lim Heo; Woong-Hee Shin; Myeong Sup Lee; Chaok Seok

Knowledge of ligand-binding sites of proteins provides invaluable information for functional studies, drug design and protein design. Recent progress in ligand-binding-site prediction methods has demonstrated that using information from similar proteins of known structures can improve predictions. The GalaxySite web server, freely accessible at http://galaxy.seoklab.org/site, combines such information with molecular docking for more precise binding-site prediction for non-metal ligands. According to the recent critical assessments of structure prediction methods held in 2010 and 2012, this server was found to be superior or comparable to other state-of-the-art programs in the category of ligand-binding-site prediction. A strong merit of the GalaxySite program is that it provides additional predictions on binding ligands and their binding poses in terms of the optimized 3D coordinates of the protein–ligand complexes, whereas other methods predict only identities of binding-site residues or copy binding geometry from similar proteins. The additional information on the specific binding geometry would be very useful for applications in functional studies and computer-aided drug discovery.


PLOS ONE | 2014

Protein Loop Modeling Using a New Hybrid Energy Function and Its Application to Modeling in Inaccurate Structural Environments

Hahnbeom Park; Gyu Rie Lee; Lim Heo; Chaok Seok

Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.


Proteins | 2016

Effective protein model structure refinement by loop modeling and overall relaxation

Gyu Rie Lee; Lim Heo; Chaok Seok

Protein structures predicted by state‐of‐the‐art template‐based methods may still have errors when the template proteins are not similar enough to the target protein. Overall target structure may deviate from the template structures owing to differences in sequences. Structural information for some local regions such as loops may not be available when there are sequence insertions or deletions. Those structural aspects that originate from deviations from templates can be dealt with by ab initio structure refinement methods to further improve model accuracy. In the CASP11 refinement experiment, we tested three different refinement methods that utilize overall structure relaxation, loop modeling, and quality assessment of multiple initial structures. From this experiment, we conclude that the overall relaxation method can consistently improve model quality. Loop modeling is the most useful when the initial model structure is high quality, with GDT‐HA >60. The method that used multiple initial structures further refined the already refined models; the minor improvements with this method raise the issue of problem with the current energy function. Future research directions are also discussed. Proteins 2016; 84(Suppl 1):293–301.


Molecular Microbiology | 2015

Factors affecting redox potential and differential sensitivity of SoxR to redox-active compounds

Kang-Lok Lee; Atul K. Singh; Lim Heo; Chaok Seok; Jung-Hye Roe

SoxR is a [2Fe‐2S]‐containing sensor‐regulator, which is activated through oxidation by redox‐active compounds (RACs). SoxRs show differential sensitivity to RACs, partly due to different redox potentials, such that Escherichia coli (Ec) SoxR with lower potential respond to broader range of RACs than Streptomyces coelicolor (Sc) SoxR. In S. coelicolor, the RACs that do not activate ScSoxR did not inhibit growth, suggesting that ScSoxR is tuned to respond to growth‐inhibitory RACs. Based on sequence comparison and mutation studies, two critical amino acids around the [2Fe‐2S] binding site were proposed as key determinants of sensitivity. ScSoxR‐like mutation (R127L/P131V) in EcSoxR changed its sensitivity profile as ScSoxR, whereas EcSoxR‐like mutation (L126R/V130P) in ScSoxR caused relaxed response. In accordance, the redox potentials of EcSoxRR127L/P131V and ScSoxRL126R/V130P were estimated to be −192 ± 8 mV and −273 ± 10 mV, respectively, approaching that of ScSoxR (−185 mV) and EcSoxR (−290 mV). Molecular dynamics simulations revealed that the R127L and P131V substitutions in EcSoxR caused more electropositive environment around [2Fe‐2S], making it harder to get oxidized. This reveals a mechanism to modulate redox‐potential in [Fe‐S]‐containing sensors by point mutations and to evolve a sensor with differential sensitivity to achieve optimal cellular physiology.


Proteins | 2018

What makes it difficult to refine protein models further via molecular dynamics simulations

Lim Heo; Michael Feig

Protein structure refinement remains a challenging yet important problem as it has the potential to bring already accurate template‐based models to near‐native resolution. Refinement based on molecular dynamics simulations has been a highly promising approach and the performance of MD‐based refinement in the Feig group during CASP12 is described here. During CASP12, sampling was extended well into the microsecond scale, an improved force field was applied, and new protocol variations were tested. Progress over previous rounds of CASP was found to be limited which is analyzed in terms of the quality of the initial models and dependency on the amount of sampling and refinement protocol variations. As current MD‐based refinement protocols appear to be reaching a plateau, detailed analysis is presented to provide new insight into the major challenges towards more extensive structure refinement, focusing in particular on sampling with and without restraints.


Protein Science | 2014

Structure of vaccinia virus A46, an inhibitor of TLR4 signaling pathway, shows the conformation of VIPER motif

Yongwoon Kim; Hasup Lee; Lim Heo; Chaok Seok; Jungwoo Choe

Vaccinia virus (VACV) encodes many proteins that interfere with the host immune system. Vaccinia virus A46 protein specifically targets the BB‐loop motif of TIR‐domain‐containing proteins to disrupt receptor:adaptor (e.g., TLR4:MAL and TLR4:TRAM) interactions of the toll‐like receptor signaling. The crystal structure of A46 (75–227) determined at 2.58 Å resolution showed that A46 formed a homodimer and adopted a Bcl‐2‐like fold similar to other VACV proteins such as A52, B14, and K7. Our structure also revealed that VIPER (viral inhibitory peptide of TLR4) motif resides in the α1‐helix and six residues of the VIPER region were exposed to surface for binding to target proteins. In vitro binding assays between wild type and six mutants A46 (75–227) and full‐length MAL identified critical residues in the VIPER motif. Computational modeling of the A46:MAL complex structure showed that the VIPER region of A46 and AB loop of MAL protein formed a major binding interface. In summary, A46 is a homodimer with a Bcl‐2‐like fold and VIPER motif is believed to be involved in the interaction with MAL protein based on our binding assays.

Collaboration


Dive into the Lim Heo's collaboration.

Top Co-Authors

Avatar

Chaok Seok

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hasup Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Gyu Rie Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Michael Feig

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Minkyung Baek

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hahnbeom Park

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jung-Hye Roe

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Junsu Ko

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge