Limei Hu
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Limei Hu.
Journal of Cell Biology | 2006
Helene Pelicano; Rui Hua Xu; Min Du; Li Feng; Ryohei Sasaki; Jennifer S. Carew; Yumin Hu; Latha Ramdas; Limei Hu; Michael J. Keating; Wei Zhang; William Plunkett; Peng Huang
Cancer cells exhibit increased glycolysis for ATP production due, in part, to respiration injury (the Warburg effect). Because ATP generation through glycolysis is less efficient than through mitochondrial respiration, how cancer cells with this metabolic disadvantage can survive the competition with other cells and eventually develop drug resistance is a long-standing paradox. We report that mitochondrial respiration defects lead to activation of the Akt survival pathway through a novel mechanism mediated by NADH. Respiration-deficient cells (ρ-) harboring mitochondrial DNA deletion exhibit dependency on glycolysis, increased NADH, and activation of Akt, leading to drug resistance and survival advantage in hypoxia. Similarly, chemical inhibition of mitochondrial respiration and hypoxia also activates Akt. The increase in NADH caused by respiratory deficiency inactivates PTEN through a redox modification mechanism, leading to Akt activation. These findings provide a novel mechanistic insight into the Warburg effect and explain how metabolic alteration in cancer cells may gain a survival advantage and withstand therapeutic agents.
Cancer Cell | 2013
Da Yang; Yan Sun; Limei Hu; Hong Zheng; Ping Ji; Chad V. Pecot; Yanrui Zhao; Sheila Reynolds; Hanyin Cheng; Rajesha Rupaimoole; David Cogdell; Matti Nykter; Russell Broaddus; Cristian Rodriguez-Aguayo; Gabriel Lopez-Berestein; Jinsong Liu; Ilya Shmulevich; Anil K. Sood; Kexin Chen; Wei Zhang
Integrated genomic analyses revealed a miRNA-regulatory network that further defined a robust integrated mesenchymal subtype associated with poor overall survival in 459 cases of serous ovarian cancer (OvCa) from The Cancer Genome Atlas and 560 cases from independent cohorts. Eight key miRNAs, including miR-506, miR-141, and miR-200a, were predicted to regulate 89% of the targets in this network. Follow-up functional experiments illustrate that miR-506 augmented E-cadherin expression, inhibited cell migration and invasion, and prevented TGFβ-induced epithelial-mesenchymal transition by targeting SNAI2, a transcriptional repressor of E-cadherin. In human OvCa, miR-506 expression was correlated with decreased SNAI2 and VIM, elevated E-cadherin, and beneficial prognosis. Nanoparticle delivery of miR-506 in orthotopic OvCa mouse models led to E-cadherin induction and reduced tumor growth.
Cancer | 2004
Xishan Hao; Baocun Sun; Limei Hu; Harri Lähdesmäki; Valerie Dunmire; Yumei Feng; Shi-Wu Zhang; Huamin Wang; Chunlei Wu; Hua Wang; Gregory N. Fuller; W. Fraser Symmans; Ilya Shmulevich; Wei Zhang
Metastatic disease is a major adverse prognostic factor in breast carcinoma. Lymph node metastases often represent the first step in the metastatic process.
Cancer Research | 2009
Xiaohong Leng; Tian Ding; Hui Lin; Yan Wang; Limei Hu; Jianhua Hu; Barry W. Feig; Wei Zhang; Lajos Pusztai; W. Fraser Symmans; Yun Wu; Ralph B. Arlinghaus
Lipocalin 2 (LCN2; also known as NGAL) is a secreted glycoprotein and its elevated expression has been observed in breast cancers. However, the importance of LCN2 in breast tumorigenesis is unclear. Here, we employed a spontaneous mammary tumor mouse model showing that MMTV-ErbB2(V664E) mice lacking mouse LCN2 had significantly delayed mammary tumor formation and metastasis with reduced matrix metalloproteinase-9 activity in the blood. LCN2 expression is upregulated by HER2/phosphoinositide 3-kinase/AKT/NF-kappaB pathway. Decreasing LCN2 expression significantly reduced the invasion and migration ability of HER2(+) breast cancer cells. Furthermore, injecting an anti-mouse LCN2 antibody into mice bearing established murine breast tumors resulted in significant blockage of lung metastasis. Our findings indicate that LCN2 is a critical factor in enhancing breast tumor formation and progression possibly in part by stabilizing matrix metalloproteinase-9. Our results suggest that inhibition of LCN2 function by an inhibitory monoclonal antibody has potential for breast cancer therapy, particularly by interfering with metastasis in aggressive types of breast cancer.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Lina Zhang; Yuexin Liu; Fengju Song; Hong Zheng; Limei Hu; Hong Lu; Peifang Liu; Xishan Hao; Wei Zhang; Kexin Chen
We have evaluated and provided evidence that the ryanodine receptor 3 gene (RYR3), which encodes a large protein that forms a calcium channel, is important for the growth, morphology, and migration of breast cancer cells. A putative binding site for microRNA-367 (miR-367) exists in the 3′UTR of RYR3, and a genetic variant, rs1044129 A→G, is present in this binding region. We confirmed that miR-367 regulates the expression of a reporter gene driven by the RYR3 3′UTR and that the regulation was affected by the RYR3 genotype. A thermodynamic model based on base pairing and the secondary structure of the RYR3 mRNA and miR-367 miRNA showed that miR-367 had a higher binding affinity for the A genotype than for the G genotype. The rs1044129 SNP was genotyped in 1,532 breast cancer cases and 1,600 healthy Chinese women. The results showed that compared with the AA genotype, G was a risk genotype for breast cancer development and was also associated with breast cancer calcification and poor survival. Thus, rs1044129 is a unique SNP that resides in a miRNA-gene regulatory loop that affects breast cancer risk, calcification, and survival.
Journal of Biological Chemistry | 2006
George K. Wang; Limei Hu; Gregory N. Fuller; Wei Zhang
In the study we report here, we tested the hypothesis that insulin-like growth factor-binding protein 2 (IGFBP2) promotes cell mobility through its interaction with integrin α5. Our previous microarray studies showed that IGFBP2 activates the expression of integrin α5. In addition, IGFBP2 has an Arg-Gly-Asp (RGD) domain, which is a known integrin binding motif. We first confirmed our microarray results by showing that the expression of integrin α5 is indeed up-regulated at the protein level in IGFBP2-overexpressing SNB19 glioma cells. Using co-immunoprecipitation, we confirmed that IGFBP2 does interact with integrin α5. To confirm that IGFBP2 interacts directly with integrin α5 through the RGD domain, we created an RGD → RGE mutant (D306E) IGFBP2 and stably overexpressed the mutant IGFBP2 in the same cell line. Co-immunoprecipitation then showed that D306E-IGFBP2 had no detectable binding with integrin α5. We further observed that IGFBP2-overexpressing cells have extensive cell surface lamellipodia, whereas D306E-IGFBP2-overexpressing cells show abundant cell surface focal adhesions. Consistent with this, phenotype analysis then showed that IGFBP2-overexpressing cells have elevated migration rates compared with vector control; in contrast, the migration rates of the D306E-IGFBP2-overexpressing cells were not elevated and were comparable with that of vector control. Decreased expression of integrin α5 by small interference RNA in IGFBP2-overexpressing cells also reduced cell mobility. Therefore, we have concluded that one mechanism by which IGFBP2 activates IGFBP2-induced cell mobility is through its interaction with integrin α5 and this interaction is specifically mediated through the RGD domain on IGFBP2.
Laboratory Investigation | 2009
Limei Hu; Walter N. Hittelman; Tao Lu; Ping Ji; Ralph B. Arlinghaus; Ilya Shmulevich; Stanley R. Hamilton; Wei Zhang
Expression of neutrophil gelatinase-associated lipocalin (NGAL)/lipocalin2, a recently recognized iron regulatory protein that binds to matrix metalloproteinase-9 (MMP9), is increased in a spectrum of cancers, including those of the colorectum. Using colon carcinoma cell lines stably transfected with NGAL or antisense NGAL, we showed that NGAL overexpression altered subcellular localization of E-cadherin and catenins, decreased E-cadherin-mediated cell–cell adhesion, enhanced cell–matrix attachment, and increased cell motility and in vitro invasion. Conversely, a decrease in NGAL enhanced more aggregated growth pattern and decreased in vitro invasion. We further showed that NGAL exerted these effects through the alteration of the subcellular localization of Rac1 in an extracellular matrix-dependent, but MMP9-independent, manner. Furthermore, we observed that the NGAL-overexpressing cells tolerated increased iron levels in the culture environment, whereas the NGAL-underexpressing cells showed significant cell death after prolonged incubation in high-iron condition. Thus, overexpressing NGAL in colon carcinomas is an important regulatory molecule that integrates extracellular environment cues, iron metabolism, and intracellular small GTPase signaling in cancer migration and invasion. NGAL may therefore be a new target for therapeutic intervention in colorectal carcinoma.
BMC Genomics | 2002
Limei Hu; Jing-jing Wang; Keith A. Baggerly; Hua Wang; Gregory N. Fuller; Stanley R. Hamilton; Kevin R. Coombes; Wei Zhang
BackgroundHigh density cDNA microarray technology provides a powerful tool to survey the activity of thousands of genes in normal and diseased cells, which helps us both to understand the molecular basis of the disease and to identify potential targets for therapeutic intervention. The promise of this technology has been hampered by the large amount of biological material required for the experiments (more than 50 μg of total RNA per array). We have modified an amplification procedure that requires only 1 μg of total RNA. Analyses of the results showed that most genes that were detected as expressed or differentially expressed using the regular protocol were also detected using the amplification protocol. In addition, many genes that were undetected or weakly detected using the regular protocol were clearly detected using the amplification protocol. We have carried out a series of confirmation studies by northern blotting, western blotting, and immunohistochemistry assays.ResultsOur results showed that most of the new information revealed by the amplification protocol represents real gene activity in the cells.ConclusionWe have confirmed a powerful and consistent cDNA microarray procedure that can be used to study minute amounts of biological tissue.
Journal of Hematology & Oncology | 2014
Fei Guo; Brittany C.Parker Kerrigan; Da Yang; Limei Hu; Ilya Shmulevich; Anil K. Sood; Fengxia Xue; Wei Zhang
Epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), play important roles in embryogenesis, stem cell biology, and cancer progression. EMT can be regulated by many signaling pathways and regulatory transcriptional networks. Furthermore, post-transcriptional regulatory networks regulate EMT; these networks include the long non-coding RNA (lncRNA) and microRNA (miRNA) families. Specifically, the miR-200 family, miR-101, miR-506, and several lncRNAs have been found to regulate EMT. Recent studies have illustrated that several lncRNAs are overexpressed in various cancers and that they can promote tumor metastasis by inducing EMT. MiRNA controls EMT by regulating EMT transcription factors or other EMT regulators, suggesting that lncRNAs and miRNA are novel therapeutic targets for the treatment of cancer. Further efforts have shown that non-coding-mediated EMT regulation is closely associated with epigenetic regulation through promoter methylation (e.g., miR-200 or miR-506) and protein regulation (e.g., SET8 via miR-502). The formation of gene fusions has also been found to promote EMT in prostate cancer. In this review, we discuss the post-transcriptional regulatory network that is involved in EMT and MET and how targeting EMT and MET may provide effective therapeutics for human disease.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Kristen M. Holmes; Matti Annala; Corrine Yingxuan Chua; Sarah M. Dunlap; Yuexin Liu; Niek Hugen; Lynette Marie Moore; David Cogdell; Limei Hu; Matti Nykter; Kenneth R. Hess; Gregory N. Fuller; Wei Zhang
Insulin-like growth factor-binding protein 2 (IGFBP2) is increasingly recognized as a glioma oncogene, emerging as a target for therapeutic intervention. In this study, we used an integrative approach to characterizing the IGFBP2 network, combining transcriptional profiling of human glioma with validation in glial cells and the replication-competent ASLV long terminal repeat with a splice acceptor/tv-a glioma mouse system. We demonstrated that IGFBP2 expression is closely linked to genes in the integrin and integrin-linked kinase (ILK) pathways and that these genes are associated with prognosis. We further showed that IGFBP2 activates integrin β1 and downstream invasion pathways, requires ILK to induce cell motility, and activates NF-κB. Most significantly, the IGFBP2/integrin/ILK/NF-κB network functions as a physiologically active signaling pathway in vivo by driving glioma progression; interfering with any point in the pathway markedly inhibits progression. The results of this study reveal a signaling pathway that is both targetable and highly relevant to improving the survival of glioma patients.