Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Limei Tian is active.

Publication


Featured researches published by Limei Tian.


Journal of Bionic Engineering | 2007

The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces

Limei Tian; Luquan Ren; Qingping Liu; Zhiwu Han; Xiao Jiang

Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.


Journal of Biomechanics | 2010

A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies

Lei Ren; David Howard; Luquan Ren; Christopher Nester; Limei Tian

The objective of this paper is to develop an analytical framework to representing the ankle-foot kinematics by modelling the foot as a rollover rocker, which cannot only be used as a generic tool for general gait simulation but also allows for case-specific modelling if required. Previously, the rollover models used in gait simulation have often been based on specific functions that have usually been of a simple form. In contrast, the analytical model described here is in a general form that the effective foot rollover shape can be represented by any polar function rho=rho(phi). Furthermore, a normalized generic foot rollover model has been established based on a normative foot rollover shape dataset of 12 normal healthy subjects. To evaluate model accuracy, the predicted ankle motions and the centre of pressure (CoP) were compared with measurement data for both subject-specific and general cases. The results demonstrated that the ankle joint motions in both vertical and horizontal directions (relative RMSE approximately 10%) and CoP (relative RMSE approximately 15% for most of the subjects) are accurately predicted over most of the stance phase (from 10% to 90% of stance). However, we found that the foot cannot be very accurately represented by a rollover model just after heel strike (HS) and just before toe off (TO), probably due to shear deformation of foot plantar tissues (ankle motion can occur without any foot rotation). The proposed foot rollover model can be used in both inverse and forward dynamics gait simulation studies and may also find applications in rehabilitation engineering.


Journal of Bionic Engineering | 2008

A Phase-Dependent Hypothesis for Locomotor Functions of Human Foot Complex

Lei Ren; David Howard; Luquan Ren; Christopher Nester; Limei Tian

The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical functions during human locomotion, e.g. body support and propulsion, stability maintenance and impact absorption. These need the human foot to be rigid and damped to transmit ground reaction forces to the upper body and maintain body stability, and also to be compliant and resilient to moderate risky impacts and save energy. How does the human foot achieve these apparent conflicting functions? In this study, we propose a phase-dependent hypothesis for the overall locomotor functions of the human foot complex based on in-vivo measurements of human natural gait and simulation results of a mathematical foot model. We propse that foot functions are highly dependent on gait phase, which is a major characteristics of human locomotion. In early stance just after heel strike, the foot mainly works as a shock absorber by moderating high impacts using the viscouselastic heel pad in both vertical and horizontal directions. In mid-stance phase (~80% of stance phase), the foot complex can be considered as a springy rocker, reserving external mechanical work using the foot arch whilst moving ground contact point forward along a curved path to maintain body stability. In late stance after heel off, the foot complex mainly serves as a force modulator like a gear box, modulating effective mechanical advantages of ankle plantiflexor muscles using metatarsal-phalangeal joints. A sound understanding of how diverse functions are implemented in a simple foot segment during human locomotion might be useful to gain insight into the overall foot locomotor functions and hence to facilitate clinical diagnosis, rehabilitation product design and humanoid robot development.


Journal of Bionic Engineering | 2008

Segmental Kinematic Coupling of the Human Spinal Column during Locomotion

Guoru Zhao; Lei Ren; Luquan Ren; John R. Hutchinson; Limei Tian; Jian S. Dai

As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constructed using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.


Journal of Bionic Engineering | 2005

Experiment about drag reduction of bionic non-smooth surface in low speed wind tunnel

Limei Tian; Luquan Ren; Zhiwu Han; Shi-cun Zhang

The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship between drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of 1 mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13 % to 22. 30%.The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship be tween drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of 1 mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13 % to 22.30%.


Journal of Bionic Engineering | 2017

Bio-inspired Graphene-enhanced Thermally Conductive Elastic Silicone Rubber as Drag Reduction Material

Limei Tian; E Jin; Haoran Mei; Qingpeng Ke; Ziyuan Li; Hailin Kui

This study presented a graphene platelet/silicone rubber (GPL/SR) composite as a drag reduction material, inspired by the boundary heating drag reduction mechanism of dolphin skin. Graphene was added as a thermally conductive filler at weight fractions of 0.17 wt%, 0.33 wt% and 0.67 wt% to pristine silicone rubber (PSR). Tests of the thermal conductivity and tensile properties showed that the thermal conductivity of all three GPL/SR materials of 0.17 wt%, 0.33 wt% and 0.67 wt% graphene were 20%, 40% and 50% higher than that of the PSR, respectively, and the elastic modulus of the 0.17 wt% GPL/SR materials was lowest. Droplet velocity testing, which can reflect the drag reduction mechanism of the heating boundary controlled by the GPL/SR composite, was performed between 0.33 wt% GPL/SR, which typically exhibits good mechanical properties and thermal conductivity performance, and the PSR. The results showed that on the 0.33 wt% GPL/SR, the droplet velocity was higher and the rolling angle was lower, implying that the GPL/SR composite had a drag-reducing function. In terms of the drag reduction mechanism, the heat conductivity performance of the GPL/SR accelerated the heat transfer between the GPL/SR composite surface and the droplet. The forces between the molecules decreased and the droplet dynamic viscosity was reduced. The drag of a sliding water droplet was proportional to the dynamic viscosity, which resulted in drag reduction. The application of GPL/SR material to the control fluid medium should have important value for fluid machinery.


Journal of Biomechanics | 2007

REPRESENTATION OF ANKLE-FOOT KINEMATICS USING AN ANALYTICAL FOOT ROLLOVER MODEL

Lei Ren; David Howard; Luquan Ren; Limei Tian; Christopher Nester

INTRODUCTION The human foot is a highly intricate structure comprising numerous bones, muscles, ligaments and synovial joints. As the only part in contact with the substrate, it plays a very important role in both supporting body-weight and in shock absorption during human locomotion. Although very complex models might be useful to gain insight into some specific clinical problems, simpler models could provide sufficient understanding of foot function for locomotion and rehabilitation studies [1,2,5].


Journal of Bionic Engineering | 2005

A Computational Model of Soil Adhesion and Resistance for a Non-smooth Bulldozing Plate

Wei-ping Shi; Luquan Ren; Limei Tian

Adhesive forces exist between soil and the surfaces of soil-engaging components; they increase working resistance and energy consumption. This paper tries to find an approach to reduce the adhesion and resistance of bulldozing plate. A simplified mechanical model of adhesion and resistance between soil and a non-smooth bulldozing plate is proposed. The interaction force between moist soil and a non-smooth bulldozing plate is analyzed. The pressure and friction distribution on the bulldozing plate are computed, and the anti-adhesive effect of a corrugated bulldozing plate is simulated numerically. Numerical results show that the wavy bulldozing plate achieves an effective drag reduction in moist soil. The optimal wavy shape of the corrugated bulldozing plate with the minimal resistance is designed. The basic principle of reducing soil adhesion of the non-smooth surface is discovered.


Applied Surface Science | 2015

Facile fabrication of biomimetic superhydrophobic surface with anti-frosting on stainless steel substrate

Yan Liu; Yuan Bai; Jingfu Jin; Limei Tian; Zhiwu Han; Luquan Ren


Archive | 2009

Bionic elastic barrier surface connected with fluid

Luquan Ren; Qinghai Chen; Limei Tian; Qingping Liu

Collaboration


Dive into the Limei Tian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Ren

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guoru Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge