Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Limin Shu is active.

Publication


Featured researches published by Limin Shu.


Cancer and Metastasis Reviews | 2010

Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis.

Limin Shu; Ka Lung Cheung; Tin Oo Khor; Chi Chen; Ah Ng Kong

Carcinogenesis is a multi-step process which could be prevented by phytochemicals. Phytochemicals from dietary plants and other plant sources such as herbs are becoming increasingly important sources of anticancer drugs or compounds for cancer chemoprevention or adjuvant chemotherapy. Phytochemicals can prevent cancer initiation, promotion, and progression by exerting anti-inflammatory and anti-oxidative stress effects which are mediated by integrated Nrf2, NF-κB, and AP-1 signaling pathways. In addition, phytochemicals from herbal medicinal plants and/or some dietary plants developed in recent years have been shown to induce apoptosis in cancer cells and inhibition of tumor growth in vivo. In advanced tumors, a series of changes involving critical signaling molecules that would drive tumor cells undergoing epithelial–mesenchymal transition and becoming invasive. In this review, we will discuss the potential molecular targets and signaling pathways that mediate tumor onset and metastasis. In addition, we will shed light on some of the phytochemicals that are capable of targeting these signaling pathways which would make them potentially applicable to cancer chemoprevention, treatment and control of cancer progression.


Pharmacology & Therapeutics | 2013

Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression.

Jong Hun Lee; Tin Oo Khor; Limin Shu; Zheng-Yuan Su; Francisco Fuentes; Ah-Ng Tony Kong

Reactive metabolites from carcinogens and oxidative stress can drive genetic mutations, genomic instability, neoplastic transformation, and ultimately carcinogenesis. Numerous dietary phytochemicals in vegetables/fruits have been shown to possess cancer chemopreventive effects in both preclinical animal models and human epidemiological studies. These phytochemicals could prevent the initiation of carcinogenesis via either direct scavenging of reactive oxygen species/reactive nitrogen species (ROS/RNS) or, more importantly, the induction of cellular defense detoxifying/antioxidant enzymes. These defense enzymes mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against ROS/RNS and reactive metabolites of carcinogens. In addition, these compounds would kill initiated/transformed cancer cells in vitro and in in vivo xenografts via diverse anti-cancer mechanisms. These mechanisms include the activation of signaling kinases (e.g., JNK), caspases and the mitochondria damage/cytochrome c pathways. Phytochemicals may also have anti-cancer effects by inhibiting the IKK/NF-κB pathway, inhibiting STAT3, and causing cell cycle arrest. In addition, other mechanisms may include epigenetic alterations (e.g., inhibition of HDACs, miRNAs, and the modification of the CpG methylation of cancer-related genes). In this review, we will discuss: the current advances in the study of Nrf2 signaling; Nrf2-deficient tumor mouse models; the epigenetic control of Nrf2 in tumorigenesis and chemoprevention; Nrf2-mediated cancer chemoprevention by naturally occurring dietary phytochemicals; and the mutation or hyper-expression of the Nrf2-Keap1 signaling pathway in advanced tumor cells. The future development of dietary phytochemicals for chemoprevention must integrate in vitro signaling mechanisms, relevant biomarkers of human diseases, and combinations of different phytochemicals and/or non-toxic therapeutic drugs, including NSAIDs.


Biochemical Pharmacology | 2011

Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation

Tin Oo Khor; Ying Huang; Tien-Yuan Wu; Limin Shu; Jonghun Lee; Ah-Ng Tony Kong

Prostate cancer (PCa) is one of the most deadly malignancies among men in the United States. Although localized prostate cancer can be effectively treated via surgery or radiation, metastatic disease is usually lethal. Recent evidence suggests that the development and progression of human prostate cancer involves complex interplay between epigenetic alterations and genetic defects. We have recently demonstrated that Nrf2, a master regulator of cellular antioxidant defense systems, was epigenetically silenced during the progression of prostate tumorigenesis in TRAMP mice. The aim of this study is to investigate the potential of curcumin (CUR), a dietary compound that we have reported to be able to prevent the development of prostate cancer in TRAMP mice, as a DNA hypomethylation agent. Using bisulfite genomic sequencing (BGS), treatment of TRAMP C1 cells we showed that CUR reversed the methylation status of the first 5 CpGs in the promoter region of the Nrf2 gene. Methylation DNA immunoprecipitation (MeDIP) analysis revealed that CUR significantly reduced the anti-mecyt antibody binding to the first 5 CpGs of the Nrf2 promoter, corroborated the BGS results. Demethylation of Nrf2 was found to be associated with the re-expression of Nrf2 and one of its downstream target gene, NQO-1, one of the major anti-oxidative stress enzymes, both at the mRNA and protein levels. Taken together, our current study suggests that CUR can elicit its prostate cancer chemopreventive effect, potentially at least in part, through epigenetic modification of the Nrf2 gene with its subsequent induction of the Nrf2-mediated anti-oxidative stress cellular defense pathway.


Aaps Journal | 2011

Epigenetic CpG Demethylation of the Promoter and Reactivation of the Expression of Neurog1 by Curcumin in Prostate LNCaP Cells

Limin Shu; Tin Oo Khor; Jonghun Lee; Sarandeep S.S. Boyanapalli; Ying Huang; Tien-Yuan Wu; Constance L. L. Saw; Ka-Lung Cheung; Ah-Ng Tony Kong

ABSTRACTCurcumin (CUR), a major bioactive polyphenolic component from turmeric curry, Curcuma longa, has been shown to be a potent anti-cancer phytochemical with well-established anti-inflammatory and anti-oxidative stress effects. Chromatin remodeling-related epigenetic regulation has emerged as an important mechanism of carcinogenesis, chemoprevention, and chemotherapy. CUR has been found to inhibit histone acetyltransferase activity, and it was also postulated to be a potential DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitor. In this study, we show that when human prostate LNCaP cells were treated with CUR, it led to demethylation of the first 14 CpG sites of the CpG island of the Neurog1 gene and restored the expression of this cancer-related CpG-methylation epigenome marker gene. At the protein level, CUR treatment had limited effects on the expression of epigenetic modifying proteins MBD2, MeCP2, DNMT1, and DNMT3a. Using ChIP assay, CUR decreased MeCP2 binding to the promoter of Neurog1 dramatically. CUR treatment showed different effects on the protein expression of HDACs, increasing the expression of HDAC1, 4, 5, and 8 but decreasing HDAC3. However, the total HDAC activity was decreased upon CUR treatment. Further analysis of the tri-methylation of histone 3 at lysine 27 (H3K27me3) showed that CUR decreased the enrichment of H3K27me3 at the Neurog1 promoter region as well as at the global level. Taken together, our present study provides evidence on the CpG demethylation ability of CUR on Neurog1 while activating its expression, suggesting a potential epigenetic modifying role for this phytochemical compound in human prostate cancer cells.


Topics in Current Chemistry | 2012

A Perspective on Dietary Phytochemicals and Cancer Chemoprevention: Oxidative Stress, Nrf2, and Epigenomics

Zheng-Yuan Su; Limin Shu; Tin Oo Khor; Jong Hun Lee; Francisco Fuentes; Ah-Ng Tony Kong

Oxidative stress is caused by an imbalance of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and the antioxidative stress defense systems in cells. ROS/RNS or carcinogen metabolites can attack intracellular proteins, lipids, and nucleic acids, which can result in genetic mutations, carcinogenesis, and other diseases. Nrf2 plays a critical role in the regulation of many antioxidative stress/antioxidant and detoxification enzyme genes, such as glutathione S-transferases (GSTs), NAD(P)H:quinone oxidoreductase 1 (NQO1), UDP-glucuronyl transferases (UGTs), and heme oxygenase-1 (HO-1), directly via the antioxidant response element (ARE). Recently, many studies have shown that dietary phytochemicals possess cancer chemopreventive potential through the induction of Nrf2-mediated antioxidant/detoxification enzymes and anti-inflammatory signaling pathways to protect organisms against cellular damage caused by oxidative stress. In addition, carcinogenesis can be caused by epigenetic alterations such as DNA methylation and histone modifications in tumor-suppressor genes and oncogenes. Interestingly, recent studies have shown that several naturally occurring dietary phytochemicals can epigenetically modify the chromatin, including reactivating Nrf2 via demethylation of CpG islands and the inhibition of histone deacetylases (HDACs) and/or histone acetyltransferases (HATs). The advancement and development of dietary phytochemicals in cancer chemoprevention research requires the integration of the known, and as-yet-unknown, compounds with the Nrf2-mediated antioxidant, detoxification, and anti-inflammatory systems and their in vitro and in vivo epigenetic mechanisms; human clinical efficacy studies must also be performed.


Biochemical Pharmacology | 2013

Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation

Chengyue Zhang; Zheng-Yuan Su; Tin Oo Khor; Limin Shu; Ah-Ng Tony Kong

Growing evidence suggests epigenetic alteration is involved during the development and progression of prostate cancer. Previously, we found Nrf2, a key regulator of cellular antioxidant defense systems, was silenced through epigenetic mechanism during tumorigenesis in vivo TRAMP mice and in vitro TRAMP C1 cells. Sulforaphane (SFN) in cruciferous vegetable has been demonstrated to be a potent cancer prevention agent for years. The aim of this study is to investigate the potential of SFN to restore Nrf2 expression in TRAMP C1 cells through epigenetic modifications. Bisulfite genomic sequencing results indicated that SFN treatment led to demethylation of the first 5 CpGs in the promoter region of the Nrf2 gene in TRAMP C1 cells. Using methylation DNA immunoprecipitation (MeDIP) assay, SFN significantly reduced the ratio of anti-mecyt antibody binding to the Nrf2 promoter containing the first 5 CpGs. SFN increased mRNA and protein expressions of Nrf2 and Nrf2 downstream target gene NQO-1. In addition, SFN decreased the protein levels of DNMT1 and DNMT3a. SFN treatment also attenuated the protein expression levels of HDACs 1, 4, 5, and 7 while increased the level of active chromatin marker acetyl-Histone 3 (Ac-H3). SFN treatments also increased chromatin-immunoprecipitated DNA of Nrf2 gene promoter using anti-Ac-H3 antibody. Taken together, our current study shows that SFN regulates Nrf2s CpGs demethylation and reactivation in TRAMP C1 cells, suggesting SFN may exert its chemopreventive effect in part via epigenetic modifications of Nrf2 gene with subsequent induction of its downstream anti-oxidative stress pathway.


Cancer Prevention Research | 2014

Requirement and Epigenetics Reprogramming of Nrf2 in Suppression of Tumor Promoter TPA-Induced Mouse Skin Cell Transformation by Sulforaphane

Zheng-Yuan Su; Chengyue Zhang; Jong Hun Lee; Limin Shu; Tien-Yuan Wu; Tin Oo Khor; Allan H. Conney; Yao-Ping Lu; Ah-Ng Tony Kong

Nrf2 is a transcription factor that plays critical roles in regulating the expression of cellular defensive antioxidants and detoxification enzymes. However, the role of Nrf2 and Nrf2s epigenetics reprogramming in skin tumor transformation is unknown. In this study, we investigated the inhibitory role and epigenetics of Nrf2 on tumor transformation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse skin epidermal JB6 (JB6 P+) cells and the anticancer effect of sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables. After five days of treatment, SFN significantly inhibited TPA-induced JB6 cellular transformation and SFN enhanced the nuclear translocation of Nrf2 and increased the mRNA and protein levels of the Nrf2 target genes HO-1, NQO1 and UGT1A1. Knockdown of Nrf2 attenuated the induction of Nrf2, HO-1 and NQO1 by SFN, enhanced TPA-induced colony formation and dampened the inhibitory effect of SFN on TPA-induced JB6 transformation. Epigenetics investigation using bisulfite genomic sequencing showed that SFN decreased the methylation ratio of the first 15 CpGs of the Nrf2 gene promoter, which was corroborated by increased Nrf2 mRNA expression. Furthermore, SFN strongly reduced the protein expression of DNA methyltransferases (DNMT1, DNMT3a and DNMT3b). SFN also inhibited the total histone deacetylase (HDAC) activity and decreased the protein expression of HDAC1, HDAC2, HDAC3 and HDAC4. Collectively, these results suggest that the anti-cancer effect of SFN against TPA-induced neoplastic transformation of mouse skin could involve the epigenetic reprogramming of anti-cancer genes such as Nrf2, leading to the epigenetic reactivation of Nrf2 and the subsequent induction of downstream target genes involved in cellular protection. Cancer Prev Res; 7(3); 319–29. ©2014 AACR.


Chemical Research in Toxicology | 2013

Epigenetic Reactivation of Nrf2 in Murine Prostate Cancer TRAMP C1 Cells by Natural Phytochemicals Z-Ligustilide and Radix Angelica Sinensis via Promoter CpG Demethylation

Zheng-Yuan Su; Tin Oo Khor; Limin Shu; Jong Hun Lee; Constance Lay Lay Saw; Tien-Yuan Wu; Ying Huang; Nanjoo Suh; Chung S. Yang; Allan H. Conney; Qing Wu; Ah-Ng Tony Kong

Cancer development has been linked to epigenetic modifications of cancer oncogenes and tumor suppressor genes; in advanced metastatic cancers, severe epigenetic modifications are present. We previously demonstrated that the progression of prostate tumors in TRAMP mice is associated with methylation silencing of the Nrf2 promoter and a reduced level of transcription of Nrf2 and Nrf2 target genes. Radix Angelicae Sinensis (RAS; Danggui) is a medicinal herb and health food supplement that has been widely used in Asia for centuries. Z-Ligustilide (Lig) is one of the bioactive components of RAS. We investigated the potential of Lig and RAS to restore Nrf2 gene expression through epigenetic modification in TRAMP C1 cells. Lig and RAS induced the mRNA and protein expression of endogenous Nrf2 and Nrf2 downstream target genes, such as HO-1, NQO1, and UGT1A1. Bisulfite genomic sequencing revealed that Lig and RAS treatment decreased the level of methylation of the first five CpGs of the Nrf2 promoter. A methylation DNA immunoprecipitation assay demonstrated that Lig and RAS significantly decreased the relative amount of methylated DNA in the Nrf2 gene promoter region. Lig and RAS also inhibited DNA methyltransferase activity in vitro. Collectively, these results suggest that Lig and RAS are able to demethylate the Nrf2 promoter CpGs, resulting in the re-expression of Nrf2 and Nrf2 target genes. Epigenetic modifications of genes, including Nrf2, may therefore contribute to the overall health benefits of RAS, including the anticancer effect of RAS and its bioactive component, Lig.


Aaps Journal | 2013

Epigenetic Modifications of Nrf2 by 3,3′-diindolylmethane In Vitro in TRAMP C1 Cell Line and In Vivo TRAMP Prostate Tumors

Tien-Yuan Wu; Tin Oo Khor; Zheng-Yuan Su; Constance Lay Lay Saw; Limin Shu; Ka-Lung Cheung; Ying Huang; Siwang Yu; Ah-Ng Tony Kong

Abstract3,3′-diindolylmethane (DIM) is currently being investigated in many clinical trials including prostate, breast, and cervical cancers and has been shown to possess anticancer effects in several in vivo and in vitro models. Previously, DIM has been reported to possess cancer chemopreventive effects in prostate carcinogenesis in TRAMP mice; however, the in vivo mechanism is unclear. The present study aims to investigate the in vitro and in vivo epigenetics modulation of DIM in TRAMP-C1 cells and in TRAMP mouse model. In vitro study utilizing TRAMP-C1 cells showed that DIM suppressed DNMT expression and reversed CpG methylation status of Nrf2 resulting in enhanced expression of Nrf2 and Nrf2-target gene NQO1. In vivo study, TRAMP mice fed with DIM-supplemented diet showed much lower incidence of tumorigenesis and metastasis than the untreated control group similar to what was reported previously. DIM increased apoptosis, decreased cell proliferation and enhanced Nrf2 and Nrf2-target gene NQO1 expression in prostate tissues. Importantly, immunohistochemical analysis showed that DIM reduced the global CpG 5-methylcytosine methylation. Focusing on one of the early cancer chemopreventive target gene Nrf2, bisulfite genomic sequencing showed that DIM decreased the methylation status of the first five CpGs of the Nrf2 promoter region, corroborating with the results of in vitro TRAMP-C1 cells. In summary, our current study shows that DIM is a potent cancer chemopreventive agent for prostate cancer and epigenetic modifications of the CpG including Nrf2 could be a potential mechanism by which DIM exerts its chemopreventive effects.


Journal of Nutrition | 2012

A γ-Tocopherol-Rich Mixture of Tocopherols Maintains Nrf2 Expression in Prostate Tumors of TRAMP Mice via Epigenetic Inhibition of CpG Methylation

Ying Huang; Tin Oo Khor; Limin Shu; Constance Lay Lay Saw; Tien-Yuan Wu; Nanjoo Suh; Chung S. Yang; Ah-Ng Tony Kong

Nuclear factor-erythroid 2-related factor 2 (Nrf2) plays a pivotal role in maintaining cellular redox homeostasis and eliminating reactive toxic species. Nrf2 is epigenetically suppressed due to CpG hypermethylation in prostate tumors from the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We previously showed that dietary feeding of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) suppressed prostate tumorigenesis in TRAMP mice associated with higher Nrf2 protein expression. We hypothesized that γ-TmT may maintain Nrf2 through epigenetic inhibition of promoter CpG methylation. In this study, 8-wk-old male TRAMP mice were fed 0.1% γ-TmT or a control diet for 16 wk. The methylation in the Nrf2 promoter was inhibited in the prostate of the γ-TmT group compared with the control group. Protein expressions of DNA methyltransferase (DNMT), including DNMT1, DNMT3A, and DNMT3B, were lower in the prostate of the γ-TmT group than in the controls. TRAMP-C1 cells were treated with 30 μmol/L of γ-TmT or blank medium for 5 d. The methylation in the Nrf2 promoter was inhibited in the γ-TmT-treated cells compared with the untreated cells at d 5, and mRNA and protein expressions of Nrf2 and NAD(P)H:quinone oxidoreductase 1 were higher. Interestingly, only DNMT3B was inhibited in the γ-TmT-treated cells compared with the untreated cells. In the aggregate, our findings demonstrate that γ-TmT could inhibit CpG methylation in the Nrf2 promoter in the prostate of TRAMP mice and in TRAMP-C1 cells, which might lead to higher Nrf2 expression and potentially contribute to the prevention of prostate tumorigenesis in this TRAMP model.

Collaboration


Dive into the Limin Shu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge