Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where ming Li is active.

Publication


Featured researches published by ming Li.


Planta | 1991

Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit

Jian Guo Dong; Woo Taek Kim; Wing Kin Yip; Gregory A. Thompson; Liming Li; Alan B. Bennett; Shang Fa Yang

Abstract1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) purified from apple (Malus sylvestris Mill.) fruit was subjected to trypsin digestion. Following separation by reversed-phase high-pressure liquid chromatography, ten tryptic peptides were sequenced. Based on the sequences of three tryptic peptides, three sets of mixed oligonucleotide probes were synthesized and used to screen a plasmid cDNA library prepared from poly(A)+ RNA of ripe apple fruit. A 1.5-kb (kilobase) cDNA clone which hybridized to all three probes were isolated. The clone contained an open reading frame of 1214 base pairs (bp) encoding a sequence of 404 amino acids. While the polyadenine tail at the 3′-end was intact, it lacked a portion of sequence at the 5′-end. Using the RNA-based polymerase chain reaction, an additional sequence of 148 bp was obtained at the 5′-end. Thus, 1362 bp were sequenced and they encode 454 amino acids. The deduced amino-acid sequence contained peptide sequences corresponding to all ten tryptic fragments, confirming the identity of the cDNA clone. Comparison of the deduced amino-acid sequence between ACC synthase from apple fruit and those from tomato (Lycopersicon esculentum Mill.) and winter squash (Cucurbita maxima Duch.) fruits demonstrated the presence of seven highly conserved regions, including the previously identified region for the active site. The size of the translation product of ACC-synthase mRNA was similar to that of the mature protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that apple ACC-synthase undergoes only minor, if any, post-translational proteolytic processing. Analysis of ACC-synthase mRNA by in-vitro translation-immunoprecipitation, and by Northern blotting indicates that the ACC-synthase mRNA was undetectable in unripe fruit, but was accumulated massively during the ripening proccess. These data demonstrate that the expression of the ACC-synthase gene is developmentally regulated.


Genetics | 2007

The Role of Sse1 in the de Novo Formation and Variant Determination of the [PSI+] Prion

Qing Fan; Kyung Won Park; Z Du; Kevin A. Morano; Liming Li

Yeast prions are a group of non-Mendelian genetic elements transmitted as altered and self-propagating conformations. Extensive studies in the last decade have provided valuable information on the mechanisms responsible for yeast prion propagation. How yeast prions are formed de novo and what cellular factors are required for determining prion “strains” or variants—a single polypeptide capable of existing in multiple conformations to result in distinct heritable phenotypes—continue to defy our understanding. We report here that Sse1, the yeast ortholog of the mammalian heat-shock protein 110 (Hsp110) and a nucleotide exchange factor for Hsp70 proteins, plays an important role in regulating [PSI+] de novo formation and variant determination. Overproduction of the Sse1 chaperone dramatically enhanced [PSI+] formation whereas deletion of SSE1 severely inhibited it. Only an unstable weak [PSI+] variant was formed in SSE1 disrupted cells whereas [PSI+] variants ranging from very strong to very weak were formed in isogenic wild-type cells under identical conditions. Thus, Sse1 is essential for the generation of multiple [PSI+] variants. Mutational analysis further demonstrated that the physical association of Sse1 with Hsp70 but not the ATP hydrolysis activity of Sse1 is required for the formation of multiple [PSI+] variants. Our findings establish a novel role for Sse1 in [PSI+] de novo formation and variant determination, implying that the mammalian Hsp110 may likewise be involved in the etiology of protein-folding diseases.


Protein & Cell | 2011

Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy

Kazuo Fushimi; Charles Long; Neha Jayaram; Xiaoping Chen; Liming Li; Jane Y. Wu

Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLDU). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUS-positive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.


Seminars in Cell & Developmental Biology | 2011

Newly identified prions in budding yeast, and their possible functions.

Emily T. Crow; Liming Li

Yeast prions are atypical genetic elements that are transmitted as heritable protein conformations. [PSI+], [URE3], and [PIN+] are three well-studied prions in the budding yeast, Saccharomyces cerevisiae. In the last three years, several additional prions have been reported in yeast, including [SWI+], [OCT+], [MCA], [GAR+], [MOT3+], [ISP+], and [NSI+]. The growing number of yeast prions suggests that protein-based inheritance might be a widespread biological phenomenon. In this review, we summarize the characteristics of each prion element, and discuss their potential functional roles in yeast biology.


Plant Molecular Biology | 1998

The structure and organization of the luciferase gene in the photosynthetic dinoflagellate Gonyaulax polyedra

Liming Li; J. Woodland Hastings

The structural features of dinoflagellate nuclei are distinct from those of other eukaryotes in several respects, and the mechanisms of DNA replication and transcription are almost completely unknown. In this study we investigated the structure and organization of the gene coding for luciferase (LCF), the enzyme catalyzing the bioluminescent reaction in the dinoflagellate Gonyaulax polyedra. The genomic lcf sequence, including its flanking regions, were completely determined. The transcription initiation site was identified using primer extension and RNase protection assays. Sequence analysis shows that, like the luciferin-binding protein gene (lbp) from G. polyedra, lcf does not contain introns. Analysis of results from genomic Southern blots, inverse PCR, and sequencing revealed that the lcf gene is organized as tandem repeats in the genome. The spacer region between the lcf genes, which very likely contains the promoter elements necessary for transcription initiation, has no TATA box or other known promoter elements or consensus sequences. However, a conserved sequence motif was identified by comparing the two intergene spacer regions of lcf and the peridinin chlorophyll protein gene, pcp; a novel 13 nt sequence, CGTGAACGCAGTG, which might be a dinoflagellate promoter, was found to be present in both.


PLOS Genetics | 2011

[SWI+], the Prion Formed by the Chromatin Remodeling Factor Swi1, Is Highly Sensitive to Alterations in Hsp70 Chaperone System Activity

Justin K. Hines; Xiaomo Li; Zhiqiang Du; Takashi Higurashi; Liming Li; Elizabeth A. Craig

The yeast prion [SWI+], formed of heritable amyloid aggregates of the Swi1 protein, results in a partial loss of function of the SWI/SNF chromatin-remodeling complex, required for the regulation of a diverse set of genes. Our genetic analysis revealed that [SWI+] propagation is highly dependent upon the action of members of the Hsp70 molecular chaperone system, specifically the Hsp70 Ssa, two of its J-protein co-chaperones, Sis1 and Ydj1, and the nucleotide exchange factors of the Hsp110 family (Sse1/2). Notably, while all yeast prions tested thus far require Sis1, [SWI+] is the only one known to require the activity of Ydj1, the most abundant J-protein in yeast. The C-terminal region of Ydj1, which contains the client protein interaction domain, is required for [SWI+] propagation. However, Ydj1 is not unique in this regard, as another, closely related J-protein, Apj1, can substitute for it when expressed at a level approaching that of Ydj1. While dependent upon Ydj1 and Sis1 for propagation, [SWI+] is also highly sensitive to overexpression of both J-proteins. However, this increased prion-loss requires only the highly conserved 70 amino acid J-domain, which serves to stimulate the ATPase activity of Hsp70 and thus to stabilize its interaction with client protein. Overexpression of the J-domain from Sis1, Ydj1, or Apj1 is sufficient to destabilize [SWI+]. In addition, [SWI+] is lost upon overexpression of Sse nucleotide exchange factors, which act to destabilize Hsp70s interaction with client proteins. Given the plethora of genes affected by the activity of the SWI/SNF chromatin-remodeling complex, it is possible that this sensitivity of [SWI+] to the activity of Hsp70 chaperone machinery may serve a regulatory role, keeping this prion in an easily-lost, meta-stable state. Such sensitivity may provide a means to reach an optimal balance of phenotypic diversity within a cell population to better adapt to stressful environments.


Journal of Phycology | 1998

THE CIRCADIAN RHYTHM OF BIOLUMINESCENCE IN PYROCYSTIS IS NOT DUE TO DIFFERENCES IN THE AMOUNT OF LUCIFERASE: A COMPARATIVE STUDY OF THREE BIOLUMINESCENT MARINE DINOFLAGELLATES

Rosemarie Knaust; Thomas Urbig; Liming Li; Walter Taylor; J. Woodland Hastings

The biochemistry and circadian regulation of luminescence in two Pyrocystis species, P. lunula Hulburt and P. noctiluca Murray et Haeckel, were compared with a well‐studied species, Gonyaulax polyedra Stein. All exhibit circadian rhythms and all have similar luciferins and luciferases. However, the Pyrocystis species lack a second protein involved in the reaction in Gonyaulax, the luciferin (substrate) binding protein, which sequesters the luciferin at the cytoplasmic pH and releases it upon acidification, thus controlling the characteristic flashing, which is similar in the three species. More striking is the difference in the circadian regulation of luminescence, which in Gonyaulax involves the daily synthesis and destruction of the two proteins, along with the luminous organelles (scintillons) from which light is emitted, and which are present in all species. In the Pyrocystis species, the amount of luciferase is the same in extracts made during the day and night phases; its circadian regulation in vivo may be attributed to a change in its localization from day to night phase.


PLOS Genetics | 2013

Spreading of a Prion Domain from Cell-to-Cell by Vesicular Transport in Caenorhabditis elegans

Carmen I. Nussbaum-Krammer; Kyung Won Park; Liming Li; Ronald Melki; Richard I. Morimoto

Prion proteins can adopt self-propagating alternative conformations that account for the infectious nature of transmissible spongiform encephalopathies (TSEs) and the epigenetic inheritance of certain traits in yeast. Recent evidence suggests a similar propagation of misfolded proteins in the spreading of pathology of neurodegenerative diseases including Alzheimers or Parkinsons disease. Currently there is only a limited number of animal model systems available to study the mechanisms that underlie the cell-to-cell transmission of aggregation-prone proteins. Here, we have established a new metazoan model in Caenorhabditis elegans expressing the prion domain NM of the cytosolic yeast prion protein Sup35, in which aggregation and toxicity are dependent upon the length of oligopeptide repeats in the glutamine/asparagine (Q/N)-rich N-terminus. NM forms multiple classes of highly toxic aggregate species and co-localizes to autophagy-related vesicles that transport the prion domain from the site of expression to adjacent tissues. This is associated with a profound cell autonomous and cell non-autonomous disruption of mitochondrial integrity, embryonic and larval arrest, developmental delay, widespread tissue defects, and loss of organismal proteostasis. Our results reveal that the Sup35 prion domain exhibits prion-like properties when expressed in the multicellular organism C. elegans and adapts to different requirements for propagation that involve the autophagy-lysosome pathway to transmit cytosolic aggregation-prone proteins between tissues.


Genetics | 2006

De Novo Appearance and “Strain” Formation of Yeast Prion [PSI+] Are Regulated by the Heat-Shock Transcription Factor

Kyung Won Park; Ji Sook Hahn; Qing Fan; Dennis J. Thiele; Liming Li

Yeast prions are non-Mendelian genetic elements that are conferred by altered and self-propagating protein conformations. Such a protein conformation-based transmission is similar to that of PrPSc, the infectious protein responsible for prion diseases. Despite recent progress in understanding the molecular nature and epigenetic transmission of prions, the underlying mechanisms governing prion conformational switch and determining prion “strains” are not understood. We report here that the evolutionarily conserved heat-shock transcription factor (HSF) strongly influences yeast prion formation and strain determination. An hsf1 mutant lacking the amino-terminal activation domain inhibits the yeast prion [PSI+] formation whereas a mutant lacking the carboxyl-terminal activation domain promotes [PSI+] formation. Moreover, specific [PSI+] strains are preferentially formed in these mutants, demonstrating the importance of genetic makeup in determining de novo appearance of prion strains. Although these hsf1 mutants preferentially support the formation of certain [PSI+] strains, they are capable of receiving and faithfully propagating nonpreferable strains, suggesting that prion initiation and propagation are distinct processes requiring different cellular components. Our findings establish the importance of HSF in prion initiation and strain determination and imply a similar regulatory role of mammalian HSFs in the complex etiology of prion disease.


Molecular and Cellular Biology | 2010

Distinct subregions of Swi1 manifest striking differences in prion transmission and SWI/SNF function.

Z Du; Emily T. Crow; Hyun Seok Kang; Liming Li

ABSTRACT We have recently reported that the yeast chromatin-remodeling factor Swi1 can exist as a prion, [SWI+], demonstrating a link between prionogenesis and global transcriptional regulation. To shed light on how the Swi1 conformational switch influences Swi1 function and to define the sequence and structural requirements for [SWI+] formation and propagation, we functionally dissected the Swi1 molecule. We show here that the [SWI+] prion features are solely attributable to the first 327 amino acid residues (N), a region that is asparagine rich. N was aggregated in [SWI+] cells but diffuse in [swi−] cells; chromosomal deletion of the N-coding region resulted in [SWI+] loss, and recombinant N peptide was able to form infectious amyloid fibers in vitro, enabling [SWI+] de novo formation through a simple transformation. Although the glutamine-rich middle region (Q) was not sufficient to aggregate in [SWI+] cells or essential for SWI/SNF function, it significantly modified the Swi1 aggregation pattern and Swi1 function. We also show that excessive Swi1 incurred Li+/Na+ sensitivity and that the N/Q regions are important for this gain of sensitivity. Taken together, our results provide the final proof of “protein-only” transmission of [SWI+] and demonstrate that the widely distributed “dispensable” glutamine/asparagine-rich regions/motifs might have important and divergent biological functions.

Collaboration


Dive into the ming Li's collaboration.

Top Co-Authors

Avatar

Z Du

Max Planck Society

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J C Lagarias

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Lindquist

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Neal Sondheimer

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Qing Fan

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge