Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lin Fang is active.

Publication


Featured researches published by Lin Fang.


Nucleic Acids Research | 2006

WEGO: a web tool for plotting GO annotations

Jia Ye; Lin Fang; Hongkun Zheng; Yong Zhang; Jie Chen; Zengjin Zhang; Jing Wang; Shengting Li; Ruiqiang Li; Lars Bolund; Jun Wang

Unified, structured vocabularies and classifications freely provided by the Gene Ontology (GO) Consortium are widely accepted in most of the large scale gene annotation projects. Consequently, many tools have been created for use with the GO ontologies. WEGO (Web Gene Ontology Annotation Plot) is a simple but useful tool for visualizing, comparing and plotting GO annotation results. Different from other commercial software for creating chart, WEGO is designed to deal with the directed acyclic graph structure of GO to facilitate histogram creation of GO annotation results. WEGO has been used widely in many important biological research projects, such as the rice genome project and the silkworm genome project. It has become one of the daily tools for downstream gene annotation analysis, especially when performing comparative genomics tasks. WEGO, along with the two other tools, namely External to GO Query and GO Archive Query, are freely available for all users at . There are two available mirror sites at and . Any suggestions are welcome at [email protected].


Nature | 2008

The diploid genome sequence of an Asian individual

Jun Wang; Wei Wang; Ruiqiang Li; Yingrui Li; Geng Tian; Laurie Goodman; Wei Fan; Junqing Zhang; Jun Li; Juanbin Zhang; Yiran Guo; Binxiao Feng; Heng Li; Yao Lu; Xiaodong Fang; Huiqing Liang; Z. Du; Dong Li; Yiqing Zhao; Yujie Hu; Zhenzhen Yang; Hancheng Zheng; Ines Hellmann; Michael Inouye; John E. Pool; Xin Yi; Jing Zhao; Jinjie Duan; Yan Zhou; Junjie Qin

Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual’s genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics.


Nature Biotechnology | 2012

Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes.

Xun Xu; Xin Liu; Song Ge; Jeffrey D. Jensen; Fengyi Hu; Xin Li; Yang Dong; Ryan N. Gutenkunst; Lin Fang; Lei Huang; Jingxiang Li; Weiming He; Guojie Zhang; Xiao-Ming Zheng; Fu-Min Zhang; Yingrui Li; Chang Yu; Karsten Kristiansen; Xiuqing Zhang; Jian Wang; Mark G. Wright; Susan R. McCouch; Rasmus Nielsen; Jun Wang; Wen Wang

Rice is a staple crop that has undergone substantial phenotypic and physiological changes during domestication. Here we resequenced the genomes of 40 cultivated accessions selected from the major groups of rice and 10 accessions of their wild progenitors (Oryza rufipogon and Oryza nivara) to >15 × raw data coverage. We investigated genome-wide variation patterns in rice and obtained 6.5 million high-quality single nucleotide polymorphisms (SNPs) after excluding sites with missing data in any accession. Using these population SNP data, we identified thousands of genes with significantly lower diversity in cultivated but not wild rice, which represent candidate regions selected during domestication. Some of these variants are associated with important biological features, whereas others have yet to be functionally characterized. The molecular markers we have identified should be valuable for breeding and for identifying agronomically important genes in rice.


Nature Genetics | 2013

A heterozygous moth genome provides insights into herbivory and detoxification

Minsheng You; Zhen Yue; Weiyi He; Xinhua Yang; Guang Yang; Miao Xie; Dongliang Zhan; Simon W. Baxter; Liette Vasseur; Geoff M. Gurr; Carl J. Douglas; Jianlin Bai; Ping Wang; Kai Cui; Shiguo Huang; Xianchun Li; Qing Zhou; Zhangyan Wu; Qilin Chen; Chunhui Liu; Bo Wang; Xiaojing Li; Xiufeng Xu; Changxin Lu; Min Hu; John W. Davey; Sandy M. Smith; Ming-Shun Chen; Xiaofeng Xia; Weiqi Tang

How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.


Nucleic Acids Research | 2004

ChickVD: a sequence variation database for the chicken genome

Jing Wang; Ximiao He; Jue Ruan; Mingtao Dai; Jie Chen; Yong Zhang; Yafeng Hu; Chen Ye; Shengting Li; Lijuan Cong; Lin Fang; Bin Liu; Songgang Li; Jian Wang; David W. Burt; Gane Ka-Shu Wong; Jun Yu; Huanming Yang; Jun Wang

Working in parallel with the efforts to sequence the chicken (Gallus gallus) genome, the Beijing Genomics Institute led an international team of scientists from China, USA, UK, Sweden, The Netherlands and Germany to map extensive DNA sequence variation throughout the chicken genome by sampling DNA from domestic breeds. Using the Red Jungle Fowl genome sequence as a reference, we identified 3.1 million non-redundant DNA sequence variants. To facilitate the application of our data to avian genetics and to provide a foundation for functional and evolutionary studies, we created the ‘Chicken Variation Database’ (ChickVD). A graphical MapView shows variants mapped onto the chicken genome in the context of gene annotations and other features, including genetic markers, trait loci, cDNAs, chicken orthologs of human disease genes and raw sequence traces. ChickVD also stores information on quantitative trait loci using data from collaborating institutions and public resources. Our data can be queried by search engine and homology-based BLAST searches. ChickVD is publicly accessible at http://chicken.genomics.org.cn.


Genomics, Proteomics & Bioinformatics | 2003

A Genome Sequence of Novel SARS-CoV Isolates: the Genotype, GD-Ins29, Leads to a Hypothesis of Viral Transmission in South China

E’de Qin; Xionglei He; Wei Tian; Yong Liu; Wei Li; Jie Wen; Jingqiang Wang; Baochang Fan; Qingfa Wu; Guohui Chang; Wuchun Cao; Z. Y. Xu; Ruifu Yang; Jing Wang; Man Yu; Yan Li; Jing Xu; Bingyin Si; Yongwu Hu; Wenming Peng; Lin Tang; Tao Jiang; Jianping Shi; Jia Ji; Yu Zhang; Jia Ye; Cui’e Wang; Yujun Han; Jun Zhou; Yajun Deng

We report a complete genomic sequence of rare isolates (minor genotype) of the SARS-CoV from SARS patients in Guangdong, China, where the first few cases emerged. The most striking discovery from the isolate is an extra 29-nucleotide sequence located at the nucleotide positions between 27,863 and 27,864 (referred to the complete sequence of BJ01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream of the N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29, suggests a significant genetic event and differentiates it from the previously reported genotype, the dominant form among all sequenced SARS-CoV isolates. A 17-nt segment of this extra sequence is identical to a segment of the same size in two human mRNA sequences that may interfere with viral genome replication and transcription in the cytosol of the infected cells. It provides a new avenue for the exploration of the virus-host interaction in viral evolution, host pathogenesis, and vaccine development.


Journal of Computer Science and Technology | 2005

Test Data Sets and Evaluation of Gene Prediction Programs on the Rice Genome

Heng Li; Jinsong Liu; Zhao Xu; Jiao Jin; Lin Fang; Lei Gao; Yu-Dong Li; Zi-Xing Xing; Shao-Gen Gao; Tao Liu; Haihong Li; Yan Li; Lijun Fang; Huimin Xie; Wei-Mou Zheng; Bailin Hao

With several rice genome projects approaching completion gene prediction/finding by computer algorithms has become an urgent task. Two test sets were constructed by mapping the newly published 28,469 full-length KOME rice cDNA to the RGP BAC clone sequences of Oryza sativa ssp. japonica: a single-gene set of 550 sequences and a multi-gene set of 62 sequences with 271 genes. These data sets were used to evaluate five ab initio gene prediction programs: RiceHMM, GlimmerR, GeneMark, FGENSH and BGF. The predictions were compared on nucleotide, exon and whole gene structure levels using commonly accepted measures and several new measures. The test results show a progress in performance in chronological order. At the same time complementarity of the programs hints on the possibility of further improvement and on the feasibility of reaching better performance by combining several gene-finders.


Nature Genetics | 2009

The genome of the cucumber, Cucumis sativus L.

Sanwen Huang; Ruiqiang Li; Zhonghua Zhang; Li Li; Xingfang Gu; Wei Fan; William J. Lucas; Xiaowu Wang; Bingyan Xie; Peixiang Ni; Yuanyuan Ren; Hongmei Zhu; Jun Li; Kui Lin; Weiwei Jin; Zhangjun Fei; Guangcun Li; Jack E. Staub; Andrzej Kilian; Edwin van der Vossen; Yang Wu; Jie Guo; Jun He; Zhiqi Jia; Yi Ren; Geng Tian; Yao Lu; Jue Ruan; Wubin Qian; Mingwei Wang


Science | 2004

A Draft Sequence for the Genome of the Domesticated Silkworm (Bombyx mori)

Qingyou Xia; Zeyang Zhou; Cheng Lu; Daojun Cheng; Fangyin Dai; Bin Li; Ping Zhao; Xingfu Zha; Tingcai Cheng; Chunli Chai; Guoqing Pan; Jinshan Xu; Chun Liu; Ying Lin; Jifeng Qian; Yong Hou; Zhengli Wu; Guanrong Li; Minhui Pan; Chunfeng Li; Yihong Shen; Xiqian Lan; Lianwei Yuan; Tian Li; Hanfu Xu; Guangwei Yang; Yongji Wan; Yong Zhu; Maode Yu; Weide Shen


Chinese Science Bulletin | 2008

Positive correlation between recombination rate and nucleotide diversity is shown under domestication selection in the chicken genome

Lin Fang; Jia Ye; Ning Li; Yong Zhang; Songgang Li; Gane Ka-Shu Wong; Jun Wang

Collaboration


Dive into the Lin Fang's collaboration.

Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ruiqiang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Geng Tian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jia Ye

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar

Jing Wang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rasmus Nielsen

University of California

View shared research outputs
Top Co-Authors

Avatar

Hongmei Zhu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge