Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lin Kooi Ong is active.

Publication


Featured researches published by Lin Kooi Ong.


Behavioural Brain Research | 2012

Increased microglial activation in the rat brain following neonatal exposure to a bacterial mimetic

Luba Sominsky; Adam K. Walker; Lin Kooi Ong; Ross J. Tynan; Frederick R. Walker; Deborah M. Hodgson

Neonatal lipopolysaccharide (LPS) exposure increases anxiety-like behaviour in adulthood. Our current aim was to examine whether neonatal LPS exposure is associated with changes in microglial activation, and whether these alterations correspond with alterations in behaviour. In adulthood, LPS-treated animals exhibited significantly increased anxiety-like behaviour and hippocampal microglial activation. The efficacy of the LPS challenge was confirmed by increased neonatal plasma corticosterone and tyrosine hydroxylase (TH) phosphorylation in the adrenal medulla. These findings suggest a neuroimmune pathway which may underpin the long-term behavioural and neuroendocrine changes following neonatal infection.


PLOS ONE | 2013

Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

Luba Sominsky; E.A. Fuller; Evgeny Bondarenko; Lin Kooi Ong; Lee Averell; Eugene Nalivaiko; Peter R. Dunkley; Phillip W. Dickson; Deborah M. Hodgson

Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.


PLOS ONE | 2012

Tyrosine Hydroxylase Phosphorylation in Catecholaminergic Brain Regions: A Marker of Activation following Acute Hypotension and Glucoprivation

Hanafi Ahmad Damanhuri; Peter Burke; Lin Kooi Ong; Larisa Bobrovskaya; Phillip W. Dickson; Peter R. Dunkley; Ann K. Goodchild

The expression of c-Fos defines brain regions activated by the stressors hypotension and glucoprivation however, whether this identifies all brain sites involved is unknown. Furthermore, the neurochemicals that delineate these regions, or are utilized in them when responding to these stressors remain undefined. Conscious rats were subjected to hypotension, glucoprivation or vehicle for 30, 60 or 120 min and changes in the phosphorylation of serine residues 19, 31 and 40 in the biosynthetic enzyme, tyrosine hydroxylase (TH), the activity of TH and/or, the expression of c-Fos were determined, in up to ten brain regions simultaneously that contain catecholaminergic cell bodies and/or terminals: A1, A2, caudal C1, rostral C1, A6, A8/9, A10, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Glucoprivation evoked phosphorylation changes in A1, caudal C1, rostral C1 and nucleus accumbens whereas hypotension evoked changes A1, caudal C1, rostral C1, A6, A8/9, A10 and medial prefrontal cortex 30 min post stimulus whereas few changes were evident at 60 min. Although increases in pSer19, indicative of depolarization, were seen in sites where c-Fos was evoked, phosphorylation changes were a sensitive measure of activation in A8/9 and A10 regions that did not express c-Fos and in the prefrontal cortex that contains only catecholaminergic terminals. Specific patterns of serine residue phosphorylation were detected, dependent upon the stimulus and brain region, suggesting activation of distinct signaling cascades. Hypotension evoked a reduction in phosphorylation in A1 suggestive of reduced kinase activity. TH activity was increased, indicating synthesis of TH, in regions where pSer31 alone was increased (prefrontal cortex) or in conjunction with pSer40 (caudal C1). Thus, changes in phosphorylation of serine residues in TH provide a highly sensitive measure of activity, cellular signaling and catecholamine utilization in catecholaminergic brain regions, in the short term, in response to hypotension and glucoprivation.


Journal of Neurochemistry | 2014

Neurobiological consequences of acute footshock stress: Effects on tyrosine hydroxylase phosphorylation and activation in the rat brain and adrenal medulla

Lin Kooi Ong; Liying Guan; Hanafi Ahmad Damanhuri; Ann K. Goodchild; Larisa Bobrovskaya; Phillip W. Dickson; Peter R. Dunkley

Stress activates selected neuronal systems in the brain and this leads to activation of a range of effector systems. Our aim was to investigate some of the relationships between these systems under basal conditions and over a 40‐min period in response to footshock stress. Specifically, we investigated catecholaminergic neurons in the locus coeruleus (LC), ventral tegmental area and medial prefrontal cortex (mPFC) in the brain, by measuring tyrosine hydroxylase (TH) protein, TH phosphorylation and TH activation. We also measured the effector responses by measuring plasma adrenocorticotrophic hormone, corticosterone, glucose and body temperature as well as activation of adrenal medulla protein kinases, TH protein, TH phosphorylation and TH activation. The LC, ventral tegmental area and adrenal medulla all had higher basal levels of Ser19 phosphorylation and lower basal levels of Ser31 phosphorylation than the mPFC, presumably because of their cell body versus nerve terminal location, while the adrenal medulla had the highest basal levels of Ser40 phosphorylation. Ser31 phosphorylation was increased in the LC at 20 and 40 min and in the mPFC at 40 min; TH activity was increased at 40 min in both tissues. There were significant increases in body temperature between 10 and 40 min, as well as increases in plasma adrenocorticotropic hormone at 20 min and corticosterone and glucose at 20 and 40 min. The adrenal medulla extracellular signal‐regulated kinase 2 was increased between 10 and 40 min and Ser31 phosphorylation was increased at 20 min and 40 min. Protein kinase A and Ser40 phosphorylation were increased only at 40 min. TH activity was increased between 20 and 40 min. TH protein and Ser19 phosphorylation levels were not altered in any of the brain regions or adrenal medulla over the first 40 min. These findings indicate that acute footshock stress leads to activation of TH in the LC, pre‐synaptic terminals in the mPFC and adrenal medullary chromaffin cells, as well as changes in activity of the hypothalamic‐pituitary‐adrenal axis.


Neurochemistry International | 2010

Signal transduction pathways and tyrosine hydroxylase regulation in the adrenal medulla following glucoprivation: An in vivo analysis

Larisa Bobrovskaya; Hanafi Ahmad Damanhuri; Lin Kooi Ong; Jennifer Schneider; Phillip W. Dickson; Peter R. Dunkley; Ann K. Goodchild

The regulation of tyrosine hydroxylase (TH, the rate limiting enzyme involved in catecholamine synthesis) is critical for the acute and sustained release of catecholamines from adrenal medullary chromaffin cells, however the mechanisms involved have only ever been investigated under in vitro/in situ conditions. Here we explored the effects on, TH phosphorylation and synthesis, and upstream signalling pathways, in the adrenal medulla evoked by the glucoprivic stimulus, 2-deoxy-d-glucose (2DG) administered intraperitoneally to conscious rats. Our results show that 2DG evoked expected increases in plasma adrenaline and glucose at 20 and 60min. We demonstrated that protein kinase A (PKA) and cyclin dependent kinases (CDK) were activated 20min following 2DG, whereas mitogen activated protein kinase (MAPK) was activated later and PKC was not significantly activated. We demonstrated that phosphorylation of Ser40TH peaked after 20min whereas phosphorylation of Ser31TH was still increasing at 60min. Serine 19 was not phosphorylated in this time frame. TH phosphorylation also occurred on newly synthesized protein 24h after 2DG. Thus 2DG increases secretion of adrenaline into the plasma and the consequent rise in glucose levels. In the adrenal medulla 2DG activates PKA, CDK and MAPK, and evokes phosphorylation of Ser40 and Ser31 in the short term and induces TH synthesis in the longer term all of which most likely contribute to increased capacity for the synthesis of adrenaline.


Neuropsychopharmacology | 2014

mTORC1 Inhibition in the Nucleus Accumbens ‘Protects’ Against the Expression of Drug Seeking and ‘Relapse’ and Is Associated with Reductions in GluA1 AMPAR and CAMKII α Levels

Morgan H. James; Rikki K Quinn; Lin Kooi Ong; Emily M. Levi; Janine L. Charnley; Doug W. Smith; Phillip W. Dickson; Christopher V. Dayas

The mechanistic target of rapamycin complex 1 (mTORC1) is necessary for synaptic plasticity, as it is critically involved in the translation of synaptic transmission-related proteins, such as Ca2+/Calmodulin-dependent kinase II alpha (CAMKIIα) and AMPA receptor subunits (GluAs). Although recent studies have implicated mTORC1 signaling in drug-motivated behavior, the ineffectiveness of rapamycin, an mTORC1 inhibitor, in suppressing cocaine self-administration has raised questions regarding the specific role of mTORC1 in drug-related behaviors. Here, we examined mTORC1’s role in three drug-related behaviors: cocaine taking, withdrawal, and reinstatement of cocaine seeking, by measuring indices of mTORC1 activity and assessing the effect of intra-cerebroventricular rapamycin on these behaviors in rats. We found that withdrawal from cocaine self-administration increased indices of mTORC1 activity in the nucleus accumbens (NAC). Intra-cerebroventricular rapamycin attenuated progressive ratio (PR) break points and reduced phospho-p70 ribosomal S6 kinase, GluA1 AMPAR, and CAMKIIα levels in the NAC shell (NACsh) and core (NACc). In a subsequent study, we treated rats with intra-NACsh infusions of rapamycin (2.5 μg/side/day for 5 days) during cocaine self-administration and then tracked the expression of addiction-relevant behaviors through to withdrawal and extinction. Rapamycin reduced drug seeking in signaled non-drug-available periods, PR responding, and cue-induced reinstatement, with these effects linked to reduced mTORC1 activity, total CAMKIIα, and GluA1 AMPAR levels in the NACsh. Together, these data highlight a role for mTORC1 in the neural processes that control the expression and maintenance of drug reward, including protracted relapse vulnerability. These effects appear to involve a role for mTORC1 in the regulation of GluA1 AMPARs and CAMKIIα in the NACsh.


Neuroscience | 2011

The effects of footshock and immobilization stress on tyrosine hydroxylase phosphorylation in the rat locus coeruleus and adrenal gland.

Lin Kooi Ong; Liying Guan; B. Stutz; Phillip W. Dickson; Peter R. Dunkley; Larisa Bobrovskaya

Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated acutely by protein phosphorylation. No studies have systematically investigated the time course of TH phosphorylation in vivo in response to different stressors. We therefore determined the extent of TH phosphorylation at Ser19, Ser31, and Ser40 over a 40-min period in response to footshock or immobilization stress in the rat locus coeruleus and adrenal medulla. There were significant changes in TH phosphorylation in both tissues and the responses to the two stressors differed markedly. With each of the phosphorylation sites immobilization stress caused a much smaller, or less sustained, response than footshock stress. With immobilization stress there was a transient increase in Ser31 phosphorylation in the locus coeruleus and in the adrenal medulla, but there were no effects on Ser19 or Ser40 phosphorylation. With footshock stress there was a substantial decrease in Ser19 phosphorylation over time, a substantial increase in Ser31 phosphorylation over time, but there were no effects on Ser40 phosphorylation. Measuring TH phosphorylation at Ser19, Ser31, and Ser40 over time can therefore be used as a sensitive index to differentiate the effects of different stressors on catecholaminergic cells.


Brain Behavior and Immunity | 2017

Reconsidering the role of glial cells in chronic stress-induced dopaminergic neurons loss within the substantia nigra? Friend or foe?

Lin Kooi Ong; Zidan Zhao; Murielle Kluge; Clifford TeBay; Katarzyna Zalewska; Phillip W. Dickson; Sarah J. Johnson; Michael Nilsson; Frederick R. Walker

Exposure to psychological stress is known to seriously disrupt the operation of the substantia nigra (SN) and may in fact initiate the loss of dopaminergic neurons within the SN. In this study, we aimed to investigate how chronic stress modified the SN in adult male mice. Using a paradigm of repeated restraint stress (an average of 20h per week for 6weeks), we examined changes within the SN using western blotting and immunohistochemistry. We demonstrated that chronic stress was associated with a clear loss of dopaminergic neurons within the SN. The loss of dopaminergic neurons was accompanied by higher levels of oxidative stress damage, indexed by levels of protein carbonylation and strong suppression of both microglial and astrocytic responses. In addition, we demonstrated for the first time, that chronic stress alone enhanced the aggregation of α-synuclein into the insoluble protein fraction. These results indicate that chronic stress triggered loss of dopaminergic neurons by increasing oxidative stress, suppressing glial neuroprotective functions and enhancing the aggregation of the neurotoxic protein, α-synuclein. Collectively, these results reinforce the negative effects of chronic stress on the viability of dopaminergic cells within the SN.


Journal of Cerebral Blood Flow and Metabolism | 2017

Chronic stress exposure following photothrombotic stroke is associated with increased levels of Amyloid beta accumulation and altered oligomerisation at sites of thalamic secondary neurodegeneration in mice

Lin Kooi Ong; Zidan Zhao; Murielle Kluge; Frederick R. Walker; Michael Nilsson

Exposure to severe stress following stroke is recognised to complicate the recovery process. We have identified that stress can exacerbate the severity of post-stroke secondary neurodegeneration in the thalamus. In this study, we investigated whether exposure to stress could influence the accumulation of the neurotoxic protein Amyloid-β. Using an experimental model of focal cortical ischemia in adult mice combined with exposure to chronic restraint stress, we examined changes within the contra- and ipsilateral thalamus at six weeks post-stroke using Western blotting and immunohistochemical approaches. Western blotting analysis indicated that stroke was associated with a significant enhancement of the 25 and 50 kDa oligomers within the ipsilateral hemisphere and the 20 kDa oligomer within the contralateral hemisphere. Stroked animals exposed to stress exhibited an additional increase in multiple forms of Amyloid-beta oligomers. Immunohistochemistry analysis confirmed that stroke was associated with a significant accumulation of Amyloid-beta within the thalami of both hemispheres, an effect that was exacerbated in stroke animals exposed to stress. Given that Amyloid-beta oligomers, most notably the 30–40 and 50 kDa oligomers, are recognised to correlate with accelerated cognitive decline, our results suggest that monitoring stress levels in patients recovering from stroke may merit consideration in the future.


Journal of Cerebral Blood Flow and Metabolism | 2017

Chronic stress induced disruption of the peri-infarct neurovascular unit following experimentally induced photothrombotic stroke

Zidan Zhao; Lin Kooi Ong; Sarah J. Johnson; Michael Nilsson; Frederick R. Walker

How stress influences brain repair is an issue of considerable importance, as patients recovering from stroke are known to experience high and often unremitting levels of stress post-event. In the current study, we investigated how chronic stress modified the key cellular components of the neurovascular unit. Using an experimental model of focal cortical ischemia in male C57BL/6 mice, we examined how exposure to a persistently aversive environment, induced by the application of chronic restraint stress, altered the cortical remodeling post-stroke. We focused on systematically investigating changes in the key components of the neurovascular unit (i.e. neurons, microglia, astrocytes, and blood vessels) within the peri-infarct territories using both immunohistochemistry and Western blotting. The results from our study indicated that exposure to chronic stress exerted a significant suppressive effect on each of the key cellular components involved in neurovascular remodeling. Co-incident with these cellular changes, we observed that chronic stress was associated with an exacerbation of motor impairment 42 days post-event. Collectively, these results highlight the vulnerability of the peri-infarct neurovascular unit to the negative effects of chronic stress.

Collaboration


Dive into the Lin Kooi Ong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larisa Bobrovskaya

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge