Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lin-Lin Bu is active.

Publication


Featured researches published by Lin-Lin Bu.


Advanced Materials | 2016

Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging.

Lang Rao; Lin-Lin Bu; Bo Cai; Jun-Hua Xu; Andrew Li; Wen-Feng Zhang; Zhi-Jun Sun; Shishang Guo; Wei Liu; Tza-Huei Wang; Xingzhong Zhao

Cancer cell membrane-coated upconversion nanoprobes (CC-UCNPs) with immune escape and homologous targeting capabilities are used for highly specific tumor imaging. The combination of UCNPs with biomimetic cancer cell membranes embodies a novel materials design strategy and presents a compelling class of advanced materials.


Oncotarget | 2015

PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma.

Guang-Tao Yu; Lin-Lin Bu; Cong-Fa Huang; Wen-Feng Zhang; WanJun Chen; J. Silvio Gutkind; Ashok B. Kulkarni; Zhi-Jun Sun

Myeloid-derived suppressor cells (MDSCs) and tumor associated macrophages (TAMs) play key roles in the tumor immune suppressive network and tumor progression. However, precise roles of programmed death-1 (PD-1) in immunological functions of MDSCs and TAMs in head and neck squamous cell carcinoma (HNSCC) have not been clearly elucidated. In the present study, we show that PD-1 and PD-L1 levels were significantly higher in human HNSCC specimen than in normal oral mucosa. MDSCs and TAMs were characterized in mice and human HNSCC specimen, correlated well with PD-1 and PD-L1 expression. αPD-1 treatment was well tolerated and significantly reduced tumor growth in the HNSCC mouse model along with significant reduction in MDSCs and TAMs in immune organs and tumors. Molecular analysis suggests a reduction in the CD47/SIRPα pathway by PD-1 blockade, which regulates MDSCs, TAMs, dendritic cell as well as effector T cells. Hence, these data identify that PD-1/PD-L1 axis is significantly increased in human and mouse HNSCC. Adoptive αPD-1 immunotherapy may provide a novel therapeutic approach to modulate the micro- and macro- environment in HNSCC.


ACS Nano | 2017

Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy

Lang Rao; Bo Cai; Lin-Lin Bu; Qing-Quan Liao; Shishang Guo; Xing-Zhong Zhao; Wen-Fei Dong; Wei Liu

Biomimetic cell membrane-coated nanoparticles (CM-NPs) with superior biochemical properties have been broadly utilized for various biomedical applications. Currently, researchers primarily focus on using ultrasonic treatment and mechanical extrusion to improve the synthesis of CM-NPs. In this work, we demonstrate that microfluidic electroporation can effectively facilitate the synthesis of CM-NPs. To test it, Fe3O4 magnetic nanoparticles (MNs) and red blood cell membrane-derived vesicles (RBC-vesicles) are infused into a microfluidic device. When the mixture of MNs and RBC-vesicles flow through the electroporation zone, the electric pulses can effectively promote the entry of MNs into RBC-vesicles. After that, the resulting RBC membrane-capped MNs (RBC-MNs) are collected from the chip and injected into experimental animals to test the in vivo performance. Owing to the superior magnetic and photothermal properties of the MN cores and the long blood circulation characteristic of the RBC membrane shells, core-shell RBC-MNs were used for enhanced tumor magnetic resonance imaging (MRI) and photothermal therapy (PTT). Due to the completer cell membrane coating, RBC-MNs prepared by microfluidic electroporation strategy exhibit significantly better treatment effect than the one fabricated by conventional extrusion. We believe the combination of microfluidic electroporation and CM-NPs provides an insight into the synthesis of bioinpired nanoparticles to improve cancer diagnosis and therapy.


PLOS ONE | 2013

Increased Expression of Lin28B Associates with Poor Prognosis in Patients with Oral Squamous Cell Carcinoma

Tianfu Wu; Jun Jia; Xuepeng Xiong; Haijun He; Lin-Lin Bu; Zhi-Li Zhao; Cong-Fa Huang; Wen-Feng Zhang

Recent studies showed that incomplete cell reprogramming can transform cells into tumour-like cells. Lin28A is associated with fibroblast and sarcoma cell reprogramming, whereas its homologue Lin28B is associated with hematopoietic cell reprogramming. This study aimed to investigate the expression and prognostic difference between Lin28A and Lin28B in oral squamous cell carcinoma (OSCC). Expression level was assessed by immunohistochemistry and staining location was confirmed by immunofluorescence. Prognostic values were analysed and compared by the Kaplan–Meier analysis and uni and multivariate Cox regression models. Besides, in vitro cell assays and in vivo nude mice xenograft were used to demonstrate the influence of increased Lin28B expression in OSCC. Lin28A and Lin28B expression increased in OSCC, and co-expression of Lin28A and Lin28B showed no significant association with patient prognosis. Kaplan–Meier analysis showed that patients with high Lin28B but not Lin28A expression had lower overall survival (OS) rates than those with low Lin28B expression. Further Univariate analysis showed that patients with increased Lin28B expression had shorter disease-free survival (DFS) and shorter OS, while multivariate analysis showed Lin28B overexpression with TNM stage predicted poor prognosis in patients with OSCC. Besides, stable expressing Lin28B in oral cancer cells promoted cell migration, invasion, colony formation, in vivo proliferation and increased the expression of cancer suppressor miRNA let-7 targeted genes IL-6, HMGA2, the EMT markers Snail and Twist, the angiogenesis inducer VEGF, and the apoptosis inhibitor Survivin. These combined results indicate that Lin28B is a novel marker for predicting prognosis in patients with OSCC and may be a therapeutic target.


Scientific Reports | 2016

NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell

Zhi-Li Zhao; Lu Zhang; Cong-Fa Huang; Si-Rui Ma; Lin-Lin Bu; Jian-Feng Liu; Guang-Tao Yu; Bing Liu; J. Silvio Gutkind; Ashok B. Kulkarni; Wen-Feng Zhang; Zhi-Jun Sun

Cancer stem cells (CSCs) are considered responsible for tumor initiation and chemoresistance. This study was aimed to investigate the possibility of targeting head neck squamous cell carcinoma (HNSCC) by NOTCH1 pathway inhibition and explore the synergistic effect of combining NOTCH inhibition with conventional chemotherapy. NOTCH1/HES1 elevation was found in human HNSCC, especially in tissue post chemotherapy and lymph node metastasis, which is correlated with CSCs markers. NOTCH1 inhibitor DAPT (GSI-IX) significantly reduces CSCs population and tumor self-renewal ability in vitro and in vivo. Flow cytometry analysis showed that NOTCH1 inhibition reduces CSCs frequency either alone or in combination with chemotherapeutic agents, namely, cisplatin, docetaxel, and 5-fluorouracil. The combined strategy of NOTCH1 blockade and chemotherapy synergistically attenuated chemotherapy-enriched CSC population, promising a potential therapeutic exploitation in future clinical trial.


Cancer Immunology, Immunotherapy | 2016

B7-H4 expression indicates poor prognosis of oral squamous cell carcinoma

Lei Wu; Wei-Wei Deng; Guang-Tao Yu; Liang Mao; Lin-Lin Bu; Si-Rui Ma; Bing Liu; Wen-Feng Zhang; Zhi-Jun Sun

Checkpoint blockade therapy utilizing monoclonal antibodies to reactivate T cells and recover their antitumor activity makes an epoch in cancer immunotherapy. The role of B7-H4, a novel negative immune checkpoint, in oral squamous cell carcinoma (OSCC) has still not been elucidated. In this study, tissue samples from human OSCC, which contains 165 primary OSCC, 48 oral epithelial dysplasia and 43 normal oral mucosa specimens, and Tgfbr1/Pten 2cKO mice OSCC model were stained with B7-H4 antibody to analyze the correlations between B7-H4 expression and clinicopathological characteristics. Kaplan–Meier analysis was used to compare the survival of patients with high B7-H4 expression and patients with low B7-H4 expression. We found B7-H4 is highly expressed in human OSCC tissue, and the B7-H4 expression level was associated with the clinicopathological parameters containing pathological grade and lymph node status. Moreover, we confirmed that B7-H4 was overexpressed in Tgfbr1/Pten 2cKO mice OSCC model. Our data also indicated that patients with high B7-H4 expression had poor overall survival compared with those with low B7-H4 expression. Furthermore, this study demonstrated that B7-H4 was positively associated with PD-L1, CD11b, CD33, PI3Kα p110, and p-S6 (S235/236). Taken together, these findings suggest B7-H4 is a potential target in the treatment of OSCC.


Oncotarget | 2015

STAT3 blockade enhances the efficacy of conventional chemotherapeutic agents by eradicating head neck stemloid cancer cell

Lin-Lin Bu; Zhi-Li Zhao; Jian-Feng Liu; Si-Rui Ma; Cong-Fa Huang; Bing Liu; Wen-Feng Zhang; Zhi-Jun Sun

Signaling transducer and activator 3 (STAT3) and cancer stem cells (CSCs) have garnered huge attention as a therapeutic focus, based on evidence that they may represent an etiologic root of tumor initiation and radio-chemoresistance. Here, we investigated the high phosphorylation status of STAT3 (p-STAT3) and its correlation with self-renewal markers in head neck squamous cell carcinoma (HNSCC). Over-expression of p-STAT3 was found to have increased in post chemotherapy HNSCC tissue. We showed that blockade of p-STAT3 eliminated both bulk tumor and side population (SP) cells with characteristics of CSCs in vitro. Inhibition of p-STAT3 using small molecule S3I-201 significantly delayed tumorigenesis of spontaneous HNSCC in mice. Combining blockade of p-STAT3 with cytotoxic drugs cisplatin, docetaxel, 5-fluorouracil (TPF) enhanced the antitumor effect in vitro and in vivo with decreased tumor sphere formation and SP cells. Taken together, our results advocate blockade of p-STAT3 in combination with conventional chemotherapeutic drugs enhance efficacy by improving CSCs eradication in HNSCC.


Cancer Immunology, Immunotherapy | 2017

Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma

Lei Wu; Wei-Wei Deng; Cong-Fa Huang; Lin-Lin Bu; Guang-Tao Yu; Liang Mao; Wen-Feng Zhang; Bing Liu; Zhi-Jun Sun

V-domain Ig suppressor of T cell activation (VISTA), a novel immune checkpoint regulatory molecule, suppresses T cell mediated immune responses. The aim of the present study was to profile the immunological expression, clinical significance and correlation of VISTA in human oral squamous cell carcinoma (OSCC). Human tissue microarrays, containing 165 primary OSCCs, 48 oral epithelial dysplasias and 43 normal oral mucosae, were applied to investigate the expression levels of VISTA, CD8, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed death ligand 1 (PD-L1), PI3Kα p110, IL13Rα2, phospho-STAT3 at tyrosine 705 (p-STAT3) and myeloid-derived suppressor cell (MDSC) markers (CD11b and CD33) by immunohistochemistry and digital pathology analysis. The results demonstrated that the protein level of VISTA was significantly higher in human OSCC specimens, and that VISTA expression in primary OSCCs was correlated with lymph node status. VISTA expression did not serve as an independent predictor for poor prognosis, while patient subgroup with VISTA high and CD8 low expression (22/165) had significantly poorer overall survival compared with other subgroups based on the multivariate and Cox hazard analyses among the primary OSCC patients in the present cohort. Additionally, the expression of VISTA was significantly correlated with PD-L1, CTLA-4, IL13Rα2, PI3K, p-STAT3, CD11b and CD33 according to Pearson’s correlation coefficient test. Taken together, the results indicated that the VISTA high and CD8 low group, as an immunosuppressive subgroup, might be associated with a poor prognosis in primary OSCC. These findings indicated that VISTA might be a potential immunotherapeutic target in OSCC treatment.


Oncotarget | 2016

Dihydromyricetin promotes autophagy and apoptosis through ROS-STAT3 signaling in head and neck squamous cell carcinoma

Teng-Fei Fan; Tianfu Wu; Lin-Lin Bu; Si-Rui Ma; Yi-Cun Li; Liang Mao; Zhi-Jun Sun; Wen-Feng Zhang

Chemotherapy is an effective weapon in the battle against cancer, but numerous cancer patients are either not sensitive to chemotherapy or develop drug resistance to current chemotherapy regimens. Therefore, an effective chemotherapy mechanism that enhances tumor sensitivity to chemotherapeutics is urgently needed. The aim of the present study was to determine the antitumor activity of dihydromyricetin (DHM) on head and neck squamous cell carcinoma (HNSCC) and its underlying mechanisms. We demonstrated that DHM can markedly induce apoptotic cell death and autophagy in HNSCC cells. Meanwhile, increased autophagy inhibited apoptosis. Pharmacological or genetic inhibition of autophagy further sensitized the HNSCC cells to DHM-induced apoptosis. Mechanistic analysis showed that the antitumor of DHM may be due to the activation phosphorylation of signal transducer and activator of transcription 3 (p-STAT3), which contributed to autophagy. Importantly, DHM triggered reactive oxygen species (ROS) generation in the HNSCC cells and the levels of ROS decreased with N-acetyl-cysteine (NAC), a ROS scavenger. Moreover, NAC abrogated the effects of DHM on STAT3-dependent autophagy. Overall, the following critical issues were observed: first, DHM increased the p-STAT3-dependent autophagy by generating ROS-signaling pathways in head and neck squamous cell carcinoma. Second, inhibiting autophagy could enhance DHM-induced apoptosis in head and neck squamous cell carcinoma.


OncoImmunology | 2016

LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma

Wei-Wei Deng; Liang Mao; Guang-Tao Yu; Lin-Lin Bu; Si-Rui Ma; Bing Liu; J. Silvio Gutkind; Ashok B. Kulkarni; Wen-Feng Zhang; Zhi-Jun Sun

ABSTRACT Immunotherapy with immune checkpoint molecule-specific monoclonal antibody have obtained encouraging results from preclinical studies and clinical trials, which promoted us to explore whether this kind of immunotherapy could be applicable to head and neck squamous cell carcinoma (HNSCC). Lymphocyte activation gene-3 (LAG-3) is an immune checkpoint control protein that negatively regulates T cells and immune response. Here, using the human tissue samples, we report these findings that LAG-3 is overexpressed on tumor-infiltrating lymphocytes (TILs; p < 0.001) and its overexpression correlates with the high pathological grades, lager tumor size and positive lymph node status in human primary HNSCC. Survival analysis identifies LAG-3 as a prognostic factor independent of tumor size and pathological grades for primary HNSCC patients with negative lymph node status (p = 0.014). Study in immunocompetent genetically defined HNSCC mouse model reports that LAG-3 is upregulated on CD4+ T cells, CD8+ T cells and CD4+Foxp3+ regulatory T cells (Tregs). In vivo study, administration of LAG-3-specific antibody retards tumor growth in a way associated with enhanced systemic antitumor response by potentiating the antitumor response of CD8+ T cells and decreasing the population of immunosuppressive cells. Taken together, our results offer a preclinical proof supporting the immunomodulatory effects of LAG-3 and suggest a potential therapeutic target of immunotherapy for HNSCC.

Collaboration


Dive into the Lin-Lin Bu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge