Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lin- Wang is active.

Publication


Featured researches published by Lin- Wang.


Nature | 2004

Colloidal nanocrystal heterostructures with linear and branched topology

Delia J. Milliron; Steven M. Hughes; Yi Cui; Liberato Manna; Jingbo Li; Lin-Wang Wang; A. Paul Alivisatos

The development of colloidal quantum dots has led to practical applications of quantum confinement, such as in solution-processed solar cells, lasers and as biological labels. Further scientific and technological advances should be achievable if these colloidal quantum systems could be electronically coupled in a general way. For example, this was the case when it became possible to couple solid-state embedded quantum dots into quantum dot molecules. Similarly, the preparation of nanowires with linear alternating compositions—another form of coupled quantum dots—has led to the rapid development of single-nanowire light-emitting diodes and single-electron transistors. Current strategies to connect colloidal quantum dots use organic coupling agents, which suffer from limited control over coupling parameters and over the geometry and complexity of assemblies. Here we demonstrate a general approach for fabricating inorganically coupled colloidal quantum dots and rods, connected epitaxially at branched and linear junctions within single nanocrystals. We achieve control over branching and composition throughout the growth of nanocrystal heterostructures to independently tune the properties of each component and the nature of their interactions. Distinct dots and rods are coupled through potential barriers of tuneable height and width, and arranged in three-dimensional space at well-defined angles and distances. Such control allows investigation of potential applications ranging from quantum information processing to artificial photosynthesis.


Science | 2015

Atomically thin two-dimensional organic-inorganic hybrid perovskites

Letian Dou; Andrew B. Wong; Yi Yu; Minliang Lai; Nikolay Kornienko; Samuel W. Eaton; Anthony Fu; Connor G. Bischak; Ma J; Ding T; Naomi S. Ginsberg; Lin-Wang Wang; Alivisatos Ap; Peidong Yang

Flat perovskite crystals Bulk crystals and thick films of inorganic-organic perovskite materials such as CH3NH3PbI3 have shown promise as active material for solar cells. Dou et al. show that thin films—a single unit cell or a few unit cells thick—of a related composition, (C4H9NH3)2PbBr4, form squares with edges several micrometers long. These materials exhibit strong and tunable blue photoluminescence. Science, this issue p. 1518 Several inorganic-organic perovskite materials grown as atomically thin crystals exhibit strong photoluminescence. Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.


Advanced Materials | 2011

Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes

Gao Liu; Shidi Xun; Nenad Vukmirović; Xiangyun Song; Paul Olalde-Velasco; Honghe Zheng; Vince Battaglia; Lin-Wang Wang; Wanli Yang

A conductive polymer is developed for solving the long-standing volume change issue in lithium battery electrodes. A combination of synthesis, spectroscopy and simulation techniques tailors the electronic structure of the polymer to enable in situ lithium doping. Composite anodes based on this polymer and commercial Si particles exhibit 2100 mAh g -1 in Si after 650 cycles without any conductive additive. Copyright


Nature | 2006

An optical supernova associated with the X-ray flash XRF 060218

E. Pian; Paolo A. Mazzali; N. Masetti; P. Ferrero; Sylvio Klose; Eliana Palazzi; Enrico Ramirez-Ruiz; S. E. Woosley; C. Kouveliotou; J. S. Deng; A. V. Filippenko; Ryan J. Foley; J. P. U. Fynbo; D. A. Kann; Weidong Li; J. Hjorth; K. Nomoto; Ferdinando Patat; Daniel Sauer; Jesper Sollerman; Paul M. Vreeswijk; E. W. Guenther; A. Levan; Paul T. O'Brien; Nial R. Tanvir; R. A. M. J. Wijers; Christophe Dumas; Olivier R. Hainaut; Diane S. Wong; Dietrich Baade

Long-duration γ-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB–supernovae were thought to be rare events. Whether X-ray flashes—analogues of GRBs, but with lower luminosities and fewer γ-rays—can also be associated with supernovae, and whether they are intrinsically ‘weak’ events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB–supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB–supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB–supernovae.


Science | 2010

Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage

Feng Tao; Sefa Dag; Lin-Wang Wang; Zhi Liu; Derek R. Butcher; Hendrik Bluhm; Miquel Salmeron; Gabor A. Somorjai

From Steps to Clusters When a flat surface of a single crystal is formed by cutting or cleavage, the atoms may move little from their bulk positions, or the surface may reconstruct as the atoms move to more energetically favorable positions. The adsorption of molecules can also change the energetic landscape and cause reconstruction. Tao et al. (p. 850; see the Perspective by Altman) examined “stepped” platinum surfaces, the (557) and (332) surfaces in which flat terraces are connected by atomic steps. Scanning tunneling microscopy and x-ray photoelectron spectroscopy revealed a reversible breakup into nanometer-scale clusters when CO surface coverages were very high. Density functional theory calculations suggest that this new morphology increases the number of edge sites for adsorption and relieves unfavorable CO-CO repulsions. Stepped platinum surfaces break up into nanometer-scale clusters at high carbon monoxide surface coverages. Stepped single-crystal surfaces are viewed as models of real catalysts, which consist of small metal particles exposing a large number of low-coordination sites. We found that stepped platinum (Pt) surfaces can undergo extensive and reversible restructuring when exposed to carbon monoxide (CO) at pressures above 0.1 torr. Scanning tunneling microscopy and photoelectron spectroscopy studies under gaseous environments near ambient pressure at room temperature revealed that as the CO surface coverage approaches 100%, the originally flat terraces of (557) and (332) oriented Pt crystals break up into nanometer-sized clusters and revert to the initial morphology after pumping out the CO gas. Density functional theory calculations provide a rationale for the observations whereby the creation of increased concentrations of low-coordination Pt edge sites in the formed nanoclusters relieves the strong CO-CO repulsion in the highly compressed adsorbate film. This restructuring phenomenon has important implications for heterogeneous catalytic reactions.


Journal of Applied Physics | 1998

Comparison of two methods for describing the strain profiles in quantum dots

Craig E. Pryor; Jeongnim Kim; Lin-Wang Wang; A. J. Williamson; Alex Zunger

The electronic structure of interfaces between lattice-mismatched semiconductors is sensitive to the strain. We compare two approaches for calculating such inhomogeneous strain—continuum elasticity [(CE), treated as a finite difference problem] and atomistic elasticity. While for small strain the two methods must agree, for the large strains that exist between lattice-mismatched III-V semiconductors (e.g., 7% for InAs/GaAs outside the linearity regime of CE) there are discrepancies. We compare the strain profile obtained by both approaches (including the approximation of the correct C2 symmetry by the C4 symmetry in the CE method) when applied to C2-symmetric InAs pyramidal dots capped by GaAs.


Journal of the American Chemical Society | 2009

Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

Bryce Sadtler; Denis Demchenko; Haimei Zheng; Steven M. Hughes; Maxwell G. Merkle; U. Dahmen; Lin-Wang Wang; A. Paul Alivisatos

The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper(I) (Cu(+)) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu(2)S) grows inward from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver(I) (Ag(+)) exchange in CdS nanorods where nonselective nucleation of silver sulfide (Ag(2)S) occurs (Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L.-W.; Alivisatos, A. P. Science 2007, 317, 355-358). From interface formation energies calculated for several models of epitaxial connections between CdS and Cu(2)S or Ag(2)S, we infer the relative stability of each interface during the nucleation and growth of Cu(2)S or Ag(2)S within the CdS nanorods. The epitaxial attachments of Cu(2)S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. Additionally, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.


Journal of Chemical Physics | 1994

Solving Schrödinger’s equation around a desired energy: Application to silicon quantum dots

Lin-Wang Wang; Alex Zunger

We present a simple, linear‐in‐size method that enables calculation of the eigensolutions of a Schrodinger equation in a desired energy window. We illustrate this method by studying the near‐gap electronic structure of Si quantum dots with size up to Si1315H460(≊37 A in diameter) using a plane wave pseudopotential representation.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Lasing in robust cesium lead halide perovskite nanowires

Samuel W. Eaton; Minliang Lai; Natalie A. Gibson; Andrew B. Wong; Letian Dou; Jie Ma; Lin-Wang Wang; Stephen R. Leone; Peidong Yang

Significance Nanowire lasers are miniaturized light sources with great potential for integration into optoelectronic circuits. Many of the current nanowire lasers either require extreme conditions for synthesis or suffer from poor operational stability. We synthesize nanowires of a promising set of compositions, the cesium lead halides, and accomplish this under near-ambient conditions. These nanowires act as efficient laser cavities and are capable of lasing with relatively low excitation thresholds. They also demonstrate unprecedented stability for a perovskite-based nanowire laser and offer a new nanoscale platform for future study. The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.


Science | 2014

Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid

Danylo Zherebetskyy; Marcus Scheele; Yingjie Zhang; Noah D. Bronstein; Christopher Thompson; David Britt; Miquel Salmeron; Paul Alivisatos; Lin-Wang Wang

Nanoparticle lattices and surfaces The challenge of resolving the details of the surfaces or assemblies of colloidal semiconductor nanoparticles can be overcome if several characterization methods are used (see the Perspective by Boles and Talapin). Boneschanscher et al. examined honeycomb superlattices of lead selenide nanocrystals formed by the bonding of crystal faces using several methods, including high-resolution electron microscopy and tomography. The structure had octahedral symmetry with the nanocrystals distorted through “necking”: the expansion of the contact points between the nanocrystals. Zherebetskyy et al. used a combination of theoretical calculations and spectroscopic methods to study the surface layer of lead sulfide nanocrystals synthesized in water. In addition to the oleic acid groups that capped the nanocrystals, hydroxyl groups were present as well. Science, this issue p. 1377, p. 1380; see also p. 1340 The surfaces of lead sulfide nanocrystals capped with an organic acid can also bear hydroxyl groups. [Also see Perspective by Boles and Talapin] Controlling the structure of colloidal nanocrystals (NCs) is key to the generation of their complex functionality. This requires an understanding of the NC surface at the atomic level. The structure of colloidal PbS NCs passivated with oleic acid has been studied theoretically and experimentally. We show the existence of surface OH– groups, which play a key role in stabilizing the PbS(111) facets, consistent with x-ray photoelectron spectroscopy as well as other spectroscopic and chemical experiments. The role of water in the synthesis process is also revealed. Our model, along with existing observations of NC surface termination and passivation by ligands, helps to explain and predict the properties of NCs and their assemblies.

Collaboration


Dive into the Lin- Wang's collaboration.

Top Co-Authors

Avatar

Alex Zunger

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Shu-Shen Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Andrew Canning

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Danylo Zherebetskyy

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang-Wei Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jingbo Li

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Shiyou Chen

East China Normal University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge