Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lin Yang is active.

Publication


Featured researches published by Lin Yang.


Biophysical Journal | 2001

Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores

Lin Yang; Thomas M. Weiss; Lai Ding; Huey W. Huang

Transmembrane pores induced by amphiphilic peptides, including melittin, are often modeled with the barrel-stave model after the alamethicin pore. We examine this assumption on melittin by using two methods, oriented circular dichroism (OCD) for detecting the orientation of melittin helix and neutron scattering for detecting transmembrane pores. OCD spectra of melittin were systematically measured. Melittin can orient either perpendicularly or parallel to a lipid bilayer, depending on the physical condition and the composition of the bilayer. Transmembrane pores were detected when the helices oriented perpendicularly to the plane of the bilayers, not when the helices oriented parallel to the bilayers. The evidence that led to the barrel-stave model for alamethicin and that to the toroidal model for magainin were reviewed. The properties of melittin pores are closely similar to that of magainin but unlike that of alamethicin. We conclude that, among naturally produced peptides that we have investigated, only alamethicin conforms to the barrel-stave model. Other peptides, including magainins, melittin and protegrins, all appear to induce transmembrane pores that conform to the toroidal model in which the lipid monolayer bends continuously through the pore so that the water core is lined by both the peptides and the lipid headgroups.


Biophysical Journal | 2000

Crystallization of Antimicrobial Pores in Membranes: Magainin and Protegrin

Lin Yang; Thomas M. Weiss; Robert I. Lehrer; Huey W. Huang

Membrane pores spontaneously formed by antimicrobial peptides in membranes were crystallized for the first time by manipulating the sample hydration and temperature. Neutron diffraction shows that magainins and protegrins form stable pores in fully hydrated fluid membranes. At lower hydration levels or low temperature, the membrane multilayers crystallize. In one crystalline phase, the pores in each bilayer arrange in a regular hexagonal array and the bilayers are stacked into a hexagonal ABC lattice, corresponding to the cubic close-packed structure of spheres. In another crystalline phase, the bilayers are modulated into the rippled multilamellae, corresponding to a 2D monoclinic lattice. The phase diagrams are described. Crystallization of the membrane pores provides possibilities for diffraction studies that might provide useful information on the pore structures.


Biophysical Journal | 1999

Experimental Evidence for Hydrophobic Matching and Membrane- Mediated Interactions in Lipid Bilayers Containing Gramicidin

William T. Heller; Thomas M. Weiss; Lin Yang; Huey W. Huang

Hydrophobic matching, in which transmembrane proteins cause the surrounding lipid bilayer to adjust its hydrocarbon thickness to match the length of the hydrophobic surface of the protein, is a commonly accepted idea in membrane biophysics. To test this idea, gramicidin (gD) was embedded in 1, 2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1, 2-myristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers at the peptide/lipid molar ratio of 1:10. Circular dichroism (CD) was measured to ensure that the gramicidin was in the beta6.3 helix form. The bilayer thickness (the phosphate-to-phosphate distance, or PtP) was measured by x-ray lamellar diffraction. In the Lalpha phase near full hydration, PtP is 30.8 A for pure DLPC, 32.1 A for the DLPC/gD mixture, 35.3 A for pure DMPC, and 32.7 A for the DMPC/gD mixture. Gramicidin apparently stretches DLPC and thins DMPC toward a common thickness as expected by hydrophobic matching. Concurrently, gramicidin-gramicidin correlations were measured by x-ray in-plane scattering. In the fluid phase, the gramicidin-gramicidin nearest-neighbor separation is 26.8 A in DLPC, but shortens to 23.3 A in DMPC. These experiments confirm the conjecture that when proteins are embedded in a membrane, hydrophobic matching creates a strain field in the lipid bilayer that in turn gives rise to a membrane-mediated attractive potential between proteins.


Biophysical Journal | 1999

Theoretical Analysis of Hydrophobic Matching and Membrane-Mediated Interactions in Lipid Bilayers Containing Gramicidin

William T. Heller; Thomas M. Weiss; Lin Yang; Huey W. Huang

We present a quantitative analysis of the effects of hydrophobic matching and membrane-mediated protein-protein interactions exhibited by gramicidin embedded in dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) bilayers (Harroun et al., 1999. Biophys. J. 76:937-945). Incorporating gramicidin, at 1:10 peptide/lipid molar ratio, decreases the phosphate-to-phosphate (PtP) peak separation in the DMPC bilayer from 35.3 A without gramicidin to 32.7 A. In contrast, the same molar ratio of gramicidin in DLPC increases the PtP from 30.8 A to 32.1 A. Concurrently, x-ray in-plane scattering showed that the most probable nearest-neighbor separation between gramicidin channels was 26.8 A in DLPC, but reduced to 23.3 A in DMPC. In this paper we review the idea of hydrophobic matching in which the lipid bilayer deforms to match the hydrophobic surface of the embedded proteins. We use a simple elasticity theory, including thickness compression, tension, and splay terms to describe the membrane deformation. The energy of membrane deformation is compared with the energy cost of hydrophobic mismatch. We discuss the boundary conditions between a gramicidin channel and the lipid bilayer. We used a numerical method to solve the problem of membrane deformation profile in the presence of a high density of gramicidin channels and ran computer simulations of 81 gramicidin channels to find the equilibrium distributions of the channels in the plane of the bilayer. The simulations contain four parameters: bilayer thickness compressibility 1/B, bilayer bending rigidity Kc, the channel-bilayer mismatch Do, and the slope of the interface at the lipid-protein boundary s. B, Kc, and Do were experimentally measured; the only free parameter is s. The value of s is determined by the requirement that the theory produces the experimental values of bilayer thinning by gramicidin and the shift in the peak position of the in-plane scattering due to membrane-mediated channel-channel interactions. We show that both hydrophobic matching and membrane-mediated interactions can be understood by the simple elasticity theory.


Biophysical Journal | 2003

A Rhombohedral Phase of Lipid Containing a Membrane Fusion Intermediate Structure

Lin Yang; Huey W. Huang

We constructed the electron density distribution from the x-ray diffraction of a phase of phospholipid that exhibited rhombohedral symmetry. To determine the phases of the diffraction amplitudes, we first extended the well-known one-dimensional swelling method for planar bilayers to a three-dimensional method applicable to a layered system containing in-plane structures, such as rhombohedral structures. The complete phase determination was accomplished by a combination of the swelling method and Luzzatis pattern recognition method. The constructed electron density distribution showed that in each unit cell, two apposed monolayers merged across the water layer and developed into an hourglass structure consistent with a postulated membrane fusion intermediate state called a stalk. The observation of the stalk structure lends a strong support to the stalk hypothesis for membrane fusion and opens a way to measure the structural parameters in the fusion pathway.


Biochemistry | 2003

Interaction of Antimicrobial Peptides with Lipopolysaccharides

Lai Ding; Lin Yang; Thomas M. Weiss; Alan J. Waring; Robert I. Lehrer; Huey W. Huang

We study the interaction of antimicrobial peptides with lipopolysaccharide (LPS) bilayers to understand how antimicrobial peptides interact with the LPS monolayer on the outer membrane of Gram-negative bacteria. LPS in water spontaneously forms a multilamellar structure composed of symmetric bilayers. We performed X-ray lamellar diffraction and wide-angle in-plane scattering to study the physical characteristics of LPS multilayers. The multilayer alignment of LPS is comparable to phospholipids. Thus, it is suitable for the application of oriented circular dichroism (OCD) to study the state of peptides in LPS bilayers. At high hydration levels, the chain melting temperature in multilamella detected by X-ray diffraction is the same as that of LPS aqueous dispersions, as measured by calorimetry. LPS has a strong CD, but with a careful subtraction of the lipid background, the OCD of peptides in LPS is measurable. The method was tested successfully with melittin. It was then applied to two representative antimicrobial peptides, magainin and protegrin. At peptide concentrations comparable to the physiological conditions, both peptides penetrate transmembrane in LPS bilayers. The results imply that antimicrobial peptides readily penetrate the LPS monolayer of the outer membrane.


Biophysical Journal | 1998

Neutron Off-Plane Scattering of Aligned Membranes. I. Method of Measurement

Lin Yang; William T. Heller; Thomas M. Weiss; Huey W. Huang

We describe a method of measuring neutron scattering of aligned membranes with the momentum transfer oriented parallel or partly perpendicular to the plane of the membranes. The method obtains the complete information for the structures within fluid membranes obtainable by scattering. Data from alamethicin- and magainin-induced pores are presented. Although the in-plane scattering curves of these two peptides are similar to each other, their off-plane scattering patterns are strikingly distinct. Magainin pores exhibit intermembrane correlations.


Biophysical Journal | 1999

Supramolecular structures of peptide assemblies in membranes by neutron off-plane scattering: method of analysis

Lin Yang; Thomas M. Weiss; William T. Heller; Huey W. Huang

In a previous paper (Yang et al., Biophys. J. 75:641-645, 1998), we showed a simple, efficient method of recording the diffraction patterns of supramolecular peptide assemblies in membranes where the samples were prepared in the form of oriented multilayers. Here we develop a method of analysis based on the diffraction theory of two-dimensional liquids. Gramicidin was used as a prototype model because its pore structure in membrane in known. At full hydration, the diffraction patterns of alamethicin and magainin are similar to gramicidin except in the scale of q (the momentum transfer of scattering), clearly indicating that both alamethicin and magainin form pores in membranes but of different sizes. When the hydration of the multilayer samples was decreased while the bilayers were still fluid, the in-plane positions of the membrane pores became correlated from one bilayer to the next. We believe that this is a new manifestation of the hydration force. The effect is most prominent in magainin patterns, which are used to demonstrate the method of analysis. When magainin samples were further dehydrated or cooled, the liquid-like diffraction turned into crystal-like patterns. This discovery points to the possibility of investigating the supramolecular structures with high-order diffraction.


Biochemistry | 1996

Membrane pores induced by magainin.

S.J. Ludtke; Ke He; William T. Heller; Lin Yang; Huey W. Huang


Science | 2002

Observation of a Membrane Fusion Intermediate Structure

Lin Yang; Huey W. Huang

Collaboration


Dive into the Lin Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William T. Heller

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Waring

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles J. Glinka

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge