Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lina Fusaro is active.

Publication


Featured researches published by Lina Fusaro.


Environmental Pollution | 2017

Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the mediterranean basin: Current research and future directions

Raúl Ochoa-Hueso; Silvana Munzi; R. Alonso; Maria Arroniz-Crespo; Anna Avila; Victoria Bermejo; Roland Bobbink; Cristina Branquinho; Laura Concostrina-Zubiri; Cristina Cruz; Ricardo Cruz de Carvalho; Alessandra De Marco; Teresa Dias; David Elustondo; Susana Elvira; Belén Estébanez; Lina Fusaro; Giacomo Alessandro Gerosa; Sheila Izquieta-Rojano; Mauro Lo Cascio; Riccardo Marzuoli; Paula Matos; Simone Mereu; José Merino; Lourdes Morillas; Alice Nunes; Elena Paoletti; Luca Paoli; Pedro Pinho; Isabel Rogers

Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin.


Plant Biology | 2016

Early and late adjustments of the photosynthetic traits and stomatal density in Quercus ilex L. grown in an ozone-enriched environment

Lina Fusaro; Giacomo Alessandro Gerosa; Elisabetta Salvatori; Riccardo Marzuoli; Robert Monga; E. Kuzminsky; C. Angelaccio; D. Quarato; Silvano Fares

Quercus ilex L. seedlings were exposed in open-top chambers for one growing season to three levels of ozone (O3 ): charcoal filtered air, non-filtered air supplemented with +30% or +74% ambient air O3 . Key functional parameters related to photosynthetic performance and stomatal density were measured to evaluate the response mechanisms of Q. ilex to chronic O3 exposure, clarifying how ecophysiological traits are modulated during the season in an ozone-enriched environment. Dark respiration showed an early response to O3 exposure, increasing approximately 45% relative to charcoal-filtered air in both O3 enriched treatments. However, at the end of the growing season, maximum rate of assimilation (Amax ) and stomatal conductance (gs ) showed a decline (-13% and -36%, for Amax and gs , respectively) only in plants under higher O3 levels. Photosystem I functionality supported the capacity of Q. ilex to cope with oxidative stress by adjusting the energy flow partitioning inside the photosystems. The response to O3 was also characterised by increased stomatal density in both O3 enriched treatments relative to controls. Our results suggest that in order to improve the reliability of metrics for O3 risk assessment, the seasonal changes in the response of gs and photosynthetic machinery to O3 stress should be considered.


Functional Plant Biology | 2014

Photosynthetic performance and biochemical adjustments in two co-occurring Mediterranean evergreens, Quercus ilex and Arbutus unedo, differing in salt-exclusion ability

Lina Fusaro; Simone Mereu; Cecilia Brunetti; Martina Di Ferdinando; Francesco Ferrini; Fausto Manes; Elisabetta Salvatori; Riccardo Marzuoli; Giacomo Alessandro Gerosa; Massimiliano Tattini

The responses to mild root zone salinity stress were investigated in two co-occurring Mediterranean woody evergreens, Quercus ilex L. and Arbutus unedo L., which differ in morpho-anatomical traits and strategies to cope with water deficit. The aim was to explore their strategies to allocate potentially toxic ions at organism level, and the consequential physiological and biochemical adjustments. Water and ionic relations, gas exchange and PSII performance, the concentration of photosynthetic pigments, and the activity of antioxidant defences, were measured. Q. ilex displayed a greater capacity to exclude Na+ and Cl- from the leaf than A. unedo, in part as a consequence of greater reductions in transpiration rates. Salt-induced reductions in CO2 assimilation resulted in Q. ilex suffering from excess of light to a greater extent than A. unedo. Consistently, in Q. ilex effective mechanisms of nonphotochemical quenching, also sustained by the lutein epoxide-lutein cycle, operated in response to salinity stress. Q. ilex also displayed a superior capacity to detoxify reactive oxygen species (ROS) than A. unedo. Our data suggest that the ability to exclude salt from actively growing shoot organs depends on the metabolic cost of sustaining leaf construction, i.e. species-specific leaf life-span, and the relative strategies to cope with salt-induced water stress. We discuss how contrasting abilities to restrict the entry and transport of salt in sensitive organs relates with species-specific salt tolerance.


PLOS ONE | 2015

Comparison of Drought Stress Response and Gene Expression between a GM Maize Variety and a Near-Isogenic Non-GM Variety

Mariolina Gullì; Elisabetta Salvatori; Lina Fusaro; Claudia Pellacani; Fausto Manes; Nelson Marmiroli

Maize MON810, grown and commercialised worldwide, is the only cultivated GM event in the EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic line Tietar were studied in different growth conditions, to compare their behaviour in response to drought. Main photosynthetic parameters were significantly affected by drought stress in both GM and non-GM varieties to a similar extent. Though DKC6575 (GM) had a greater sensitivity in the early phase of stress response as compared with Tietar (non-GM), after six days of stress they behaved similarly, and both varieties recovered from stress damage. Profiling gene expression in water deficit regimes and in a generalised drought stress condition showed an up-regulation of many stress-responsive genes, but a greater number of differentially expressed genes was observed in Tietar, with genes belonging to transcription factor families and genes encoding heat shock proteins, late embryogenesis abundant proteins and detoxification enzymes. Since induction of these genes have been indicated from the literature as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient response to drought. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding the delta-endotoxin insecticidal protein) in water deficit conditions. In all the experiments, the CryIAb transcript was not influenced by drought stress, but was expressed at a constant level. This suggests that though possessing a different pattern of sensitivity to stress, the GM variety maintains the same expression level for the transgene.


International Journal of Phytoremediation | 2016

Effects of high Zn and Pb concentrations on Phragmites australis (Cav.) Trin. Ex. Steudel: Photosynthetic performance and metal accumulation capacity under controlled conditions

Alessandra Bernardini; Elisabetta Salvatori; V. Guerrini; Lina Fusaro; S. Canepari; Fausto Manes

abstract The response of Phragmites australis (Cav.) Trin. Ex. Steudel to zinc (Zn) and lead (Pb) was studied separately in two hydroponic tests, during a three weeks experiment. The effects on ecophysiology and biomass partitioning were evaluated during the metal treatments and at the recovery, and total metal content and accumulation capacity in different plant organs were assessed. Zn and Pb had different effects on the overall measured parameters, highlighting different mechanism of action. In particular, Zn concentration was higher in roots and, being a micronutrient, it was translocated into leaves, producing a reduction of assimilation rate, stomatal conductance (–71.9 and –81.3% respect to the control plant respectively), and a strong down regulation of photosystems functionality both at PSII and PSI level. Otherwise, Pb was accumulated mainly in the more lignified tissue such as rhizomes, with slightly effect on gas exchange. Chlorophyll a fluorescence highlighted that Pb inhibits the electron transfer process at the PSI donor side, without recovery after the removal of the metal stress. Despite these physiological limitations, P. australis showed a high capacity to accumulate both metals, and only slight reduction of biomass, being therefore a suitable species for phytoremediation interventions.


Remote Sensing | 2017

Mapping and Assessment of PM10 and O3 Removal by Woody Vegetation at Urban and Regional Level

Lina Fusaro; Federica Marando; Alessandro Sebastiani; G. Capotorti; C. Blasi; R. Copiz; Luca Congedo; Michele Munafò; Luisella Ciancarella; Fausto Manes

This study is the follow up of the URBAN-MAES pilot implemented in the framework of the EnRoute project. The study aims at mapping and assessing the process of particulate matter (PM10) and tropospheric ozone (O3) removal by various forest and shrub ecosystems. Different policy levels and environmental contexts were considered, namely the Metropolitan city of Rome and, at a wider level, the Latium region. The approach involves characterization of the main land cover and ecosystems using Sentinel-2 images, enabling a detailed assessment of Ecosystem Service (ES), and monetary valuation based on externality values. The results showed spatial variations in the pattern of PM10 and O3 removal inside the Municipality and in the more rural Latium hinterland, reflecting the spatial dynamics of the two pollutants. Evergreen species displayed higher PM10 removal efficiency, whereas deciduous species showed higher O3 absorption in both rural and urban areas. The overall pollution removal accounted for 5123 and 19,074 Mg of PM10 and O3, respectively, with a relative monetary benefit of 161 and 149 Million Euro for PM10 and O3, respectively. Our results provide spatially explicit evidence that may assist policymakers in land-oriented decisions towards improving Green Infrastructure and maximizing ES provision at different governance levels.


Plant Biosystems | 2016

Effects of nitrogen deposition, drought and their interaction, on functional and structural traits of Fraxinus ornus L. and Quercus ilex L.

Lina Fusaro; Elisabetta Salvatori; Fausto Manes

Abstract A controlled experiment was conducted in order to understand how functional and structural traits of species with different leaf habits (Fraxinus ornus and Quercus ilex) shift as a consequence of nitrogen (N) addition (30 kg ha yr−1) and to explore the effect that N has on the water stress response. The experiment was divided in two stages: stage I, N addition under well-watered condition; stage II, N addition under drought. Functionality of the photosynthetic machinery, growth and biomass partitioning were assessed. The N content at leaf level increases in F. ornus only, which invests resources on photosynthetic machinery, whereas Q. ilex tends to store N in non-photosynthetic biomass, increasing relative growth rate and biomass, resulting in different allometric ratio. This effect may play a role in water stress response. Stomatal conductance of Q. ilex treated with N and subjected to water stress is lower relative to drought treatment. On the contrary, F. ornus takes advantage of N addition that has ameliorative effects on its functionality when drought was imposed. The obtained results, highlighting response mechanisms to multiple stress factors, should help to better understand and assess the performance of forest ecosystems under the foreseen environmental changes.


Environmental Science and Pollution Research | 2018

Modeling ozone uptake by urban and peri-urban forest: a case study in the Metropolitan City of Rome

Lina Fusaro; Simone Mereu; Elisabetta Salvatori; Elena Agliari; Silvano Fares; Fausto Manes

Urban and peri-urban forests are green infrastructures (GI) that play a substantial role in delivering ecosystem services such as the amelioration of air quality by the removal of air pollutants, among which is ozone (O3), which is the most harmful pollutant in Mediterranean metropolitan areas. Models may provide a reliable estimate of gas exchanges between vegetation and atmosphere and are thus a powerful tool to quantify and compare O3 removal in different contexts. The present study modeled the O3 stomatal uptake at canopy level of an urban and a peri-urban forest in the Metropolitan City of Rome in two different years. Results show different rates of O3 fluxes between the two forests, due to different exposure to the pollutant, management practice effects on forest structure and functionality, and environmental conditions, namely, different stressors affecting the gas exchange rates of the two GIs. The periodic components of the time series calculated by means of the spectral analysis show that seasonal variation of modeled canopy transpiration is driven by precipitation in peri-urban forests, whereas in the urban forest seasonal variations are driven by vapor pressure deficit of ambient air. Moreover, in the urban forest high water availability during summer months, owing to irrigation practice, leads to an increase in O3 uptake, thus suggesting that irrigation may enhance air phytoremediation in urban areas.


PLOS ONE | 2017

Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species

Lina Fusaro; Adriano Palma; Elisabetta Salvatori; Adriana Basile; Viviana Maresca; Elham Asadi karam; Fausto Manes; Serena Aceto

The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.


PLOS ONE | 2018

In-field and in-vitro study of the moss Leptodictyum riparium as bioindicator of toxic metal pollution in the aquatic environment: Ultrastructural damage, oxidative stress and HSP70 induction

Sergio Esposito; Stefano Loppi; Fabrizio Monaci; Luca Paoli; Andrea Vannini; Sergio Sorbo; Viviana Maresca; Lina Fusaro; Elham Asadi karam; Marco Lentini; Alessia De Lillo; Barbara Conte; Piergiorgio Cianciullo; Adriana Basile

This study evaluates the effects of toxic metal pollution in the highly contaminated Sarno River (South Italy), by using the aquatic moss Leptodictyum riparium in bags at 3 representative sites of the river. Biological effects were assessed by metal bioaccumulation, ultrastructural changes, oxidative stress, as Reactive Oxygen Species (ROS) production and Glutathione S-transferase (GST) activity, as well as Heat Shock Proteins 70 (HSP70s) induction. The results showed that L. riparium is a valuable bioindicator for toxic metal pollution of water ecosystem, accumulating different amounts of toxic metals from the aquatic environment. Toxic metal pollution caused severe ultrastructural damage, as well as increased ROS production and induction of GST and HSP70s, in the samples exposed at the polluted sites. To assess the role and the effect of toxic metals on L. riparium, were also cultured in vitro with Cd, Cr, Cu, Fe, Ni, Pb, Zn at the same concentrations as measured at the 3 sites. Ultrastructure, ROS, GST, and HSP70s resulted severely affected by toxic metals. Based on our findings, we confirm L. riparium as a model organism in freshwater biomonitoring surveys, and GST and HSP70s as promising biomarkers of metal toxicity.

Collaboration


Dive into the Lina Fusaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fausto Manes

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Giacomo Alessandro Gerosa

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angelo Finco

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federica Marando

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Muys

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge