Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lina Nordquist is active.

Publication


Featured researches published by Lina Nordquist.


IEEE Transactions on Biomedical Engineering | 2008

Painless Drug Delivery Through Microneedle-Based Transdermal Patches Featuring Active Infusion

Niclas Roxhed; Björn Samel; Lina Nordquist; Patrick Griss; Göran Stemme

This paper presents the first microneedle-based transdermal patch with integrated active dispensing functionality. The electrically controlled system consists of a low-cost dosing and actuation unit capable of controlled release of liquid in the microliter range at low flow-rates and minimally invasive, side-opened, microneedles. The system was successfully tested in vivo by insulin administration to diabetic rats. Active infusion of insulin at 2 mul/h was compared to passive, diffusion-driven, delivery. Continuous active infusion caused significantly higher insulin concentrations in blood plasma. After a 3-h delivery period, the insulin concentration was five times larger compared to passive delivery. Consistent with insulin concentrations, actively administered insulin resulted in a significant decrease of blood glucose levels. Additionally, insertion and liquid injection was verified on human skin. This study shows the feasibility of a patch-like system with on-board liquid storage and dispensing capability. The proposed device represents a first step towards painless and convenient administration of macromolecular drugs such as insulin or vaccines.


Biochimica et Biophysica Acta | 2008

Diabetes-induced up-regulation of uncoupling protein-2 results in increased mitochondrial uncoupling in kidney proximal tubular cells

Malou Friederich; Angelica Fasching; Peter Hansell; Lina Nordquist; Fredrik Palm

We have previously reported increased O(2) consumption unrelated to active transport by tubular cells and up-regulated mitochondrial uncoupling protein (UCP)-2 expressions in diabetic kidneys. It is presently unknown if the increased UCP-2 levels in the diabetic kidney results in mitochondrial uncoupling and increased O(2) consumption, which we therefore investigated in this study. The presence of UCP-2 in proximal tubular cells was confirmed by immunohistochemistry and found to be increased (western blot) in homogenized tissue and isolated mitochondria from kidney cortex of diabetic rats. Isolated proximal tubular cells had increased total and ouabain-insensitive O(2) consumption compared to controls. Isolated mitochondria from diabetic animals displayed increased glutamate-stimulated O(2) consumption (in the absence of ADP and during inhibition of the ATP-synthase by oligomycin) compared to controls. Guanosine diphosphate, an UCP inhibitor, and bovine serum albumin which removes fatty acids that are essential for UCP-2 uncoupling activity, independently prevented the increased glutamate-stimulated O(2) consumption in mitochondria from diabetic animals. In conclusion, diabetic rats have increased mitochondrial UCP-2 expression in renal proximal tubular cells, which results in mitochondrial uncoupling and increased O(2) consumption. This mechanism may be protective against diabetes-induced oxidative stress, but will increase O(2) usage. The subsequently reduced O(2) availability may contribute to diabetes-induced progressive kidney damage.


Journal of The American Society of Nephrology | 2015

Activation of Hypoxia-Inducible Factors Prevents Diabetic Nephropathy

Lina Nordquist; Malou Friederich-Persson; Angelica Fasching; Per Liss; Kumi Shoji; Masaomi Nangaku; Peter Hansell; Fredrik Palm

Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glomerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharmacologic activation of the HIF system may prevent development of diabetic nephropathy.


Clinical and Experimental Pharmacology and Physiology | 2011

Renal tubulointerstitial hypoxia: Cause and consequence of kidney dysfunction

Fredrik Palm; Lina Nordquist

1. Intrarenal oxygen availability is the balance between supply, mainly dependent on renal blood flow, and demand, determined by the basal metabolic demand and the energy‐requiring tubular electrolyte transport. Renal blood flow is maintained within close limits in order to sustain stable glomerular filtration, so increased intrarenal oxygen consumption is likely to cause tissue hypoxia.


American Journal of Physiology-renal Physiology | 2010

Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress

Fredrik Palm; Masaomi Nangaku; Angelica Fasching; Tetsuhiro Tanaka; Lina Nordquist; Peter Hansell; Takahisa Kawakami; Fuyuhiko Nishijima; Toshiro Fujita

In addition to causing uremic symptoms, uremic toxins accelerate the progression of renal failure. To elucidate the pathophysiology of uremic states, we investigated the effect of indoxyl sulfate (IS), a representative uremic toxin, on oxygen metabolism in tubular cells. We demonstrated an increase in oxygen consumption by IS in freshly isolated rat and human proximal tubules. Studies utilizing ouabain, the Na-K-ATPase inhibitor, and apocynin, the NADPH oxidase inhibitor, as well as the in vivo gene-silencing approach to knock down p22(phox) showed that the increase in tubular oxygen consumption by IS is dependent on Na-K-ATPase and oxidative stress. We investigated whether the enhanced oxygen consumption led to subsequent hypoxia of the kidney. An increase in serum IS concentrations in rats administered indole was associated with a decrease in renal oxygenation (8 h). The remnant kidney in rats developed hypoxia at 16 wk. Treatment of the rats with AST-120, an oral adsorbent that removes uremic toxins, reduced serum IS levels and improved oxygenation of the kidney. Amelioration of hypoxia in the remnant kidney was associated with better renal functions and less histological injury. Reduction of serum IS levels also led to a decrease in oxidative stress in the kidney. Our ex vivo and in vivo studies implicated that uremic states may deteriorate renal dysfunction via dysregulating oxygen metabolism in tubular cells. The abnormal oxygen metabolism in tubular cells by uremic toxins was, at least in part, mediated by oxidative stress.


Clinical and Experimental Pharmacology and Physiology | 2013

Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease.

Prabhleen Singh; Sven-Erik Ricksten; Gudrun Bragadottir; Bengt Redfors; Lina Nordquist

Acute kidney injury (AKI) is a major burden on health systems and may arise from multiple initiating insults, including ischaemia‐reperfusion injury, cardiovascular surgery, radiocontrast administration and sepsis. Similarly, the incidence and prevalence of chronic kidney disease (CKD) continues to increase, with significant morbidity and mortality. Moreover, an increasing number of AKI patients survive to develop CKD and end‐stage renal disease. Although the mechanisms for the development of AKI and progression to CKD remain poorly understood, initial impairment of oxygen balance likely constitutes a common pathway, causing renal tissue hypoxia and ATP starvation that, in turn, induce extracellular matrix production, collagen deposition and fibrosis. Thus, possible future strategies for one or both conditions may involve dopamine, loop diuretics, atrial natriuretic peptide and inhibitors of inducible nitric oxide synthase, substances that target kidney oxygen consumption and regulators of renal oxygenation, such as nitric oxide and heme oxygenase‐1.


American Journal of Physiology-renal Physiology | 2009

Proinsulin C-peptide reduces diabetes-induced glomerular hyperfiltration via efferent arteriole dilation and inhibition of tubular sodium reabsorption

Lina Nordquist; Russell D Brown; Angelica Fasching; Patrik Persson; Fredrik Palm

C-peptide reduces diabetes-induced glomerular hyperfiltration in diabetic patients and experimental animal models. However, the mechanisms mediating the beneficial effect of C-peptide remain unclear. We investigated whether altered renal afferent-efferent arteriole tonus or alterations in tubular Na+ transport (T(Na)) in response to C-peptide administration mediate the reduction of diabetes-induced glomerular hyperfiltration. Glomerular filtration rate, filtration fraction, total and cortical renal blood flow, total kidney O2 consumption (QO2), T(Na), fractional Na+ and Li+ excretions, and tubular free-flow and stop-flow pressures were measured in anesthetized adult male normoglycemic and streptozotocin-diabetic Sprague-Dawley rats. The specific effect of C-peptide on transport-dependent QO2 was investigated in vitro in freshly isolated proximal tubular cells. C-peptide reduced glomerular filtration rate (-24%), stop-flow pressure (-8%), and filtration fraction (-17%) exclusively in diabetic rats without altering renal blood flow. Diabetic rats had higher baseline T(Na) (+40%), which was reduced by C-peptide. Similarly, C-peptide increased fractional Na+ (+80%) and Li+ (+47%) excretions only in the diabetic rats. None of these parameters was affected by vehicle treatments in either group. Baseline QO2 was 37% higher in proximal tubular cells from diabetic rats than controls and was normalized by C-peptide. C-peptide had no effect on ouabain-pretreated diabetic cells from diabetic rats. C-peptide reduced diabetes-induced hyperfiltration via a net dilation of the efferent arteriole and inhibition of tubular Na+ reabsorption, both potent regulators of the glomerular net filtration pressure. These findings provide new mechanistic insight into the beneficial effects of C-peptide on diabetic kidney function.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Renal oxidative stress, oxygenation, and hypertension

Fredrik Palm; Lina Nordquist

Hypertension is closely associated with progressive kidney dysfunction, manifested as glomerulosclerosis, interstitial fibrosis, proteinuria, and eventually declining glomerular filtration. The postulated mechanism for development of glomerulosclerosis is barotrauma caused by increased capillary pressure, but the reason for development of interstitial fibrosis and the subsequently reduced kidney function is less clear. However, it has been hypothesized that tissue hypoxia induces fibrogenesis and progressive renal failure. This is very interesting, since recent reports highlight several different mechanisms resulting in altered oxygen handling and availability in the hypertensive kidney. Such mechanisms include decreased renal blood flow due to increased vascular tone induced by ANG II that limits oxygen delivery and increases oxidative stress, resulting in increased mitochondrial oxygen usage, increased oxygen usage for tubular electrolyte transport, and shunting of oxygen from arterial to venous blood in preglomerular vessels. It has been shown in several studies that interventions to prevent oxidative stress and to restore kidney tissue oxygenation prevent progression of kidney dysfunction. Furthermore, inhibition of ANG II activity, by either blocking ANG II type 1 receptors or angiotensin-converting enzyme, or by preventing oxidative stress by administration of antioxidants also results in improved blood pressure control. Therefore, it seems likely that tissue hypoxia in the hypertensive kidney contributes to progression of kidney damage, and perhaps also persistence the high blood pressure.


Diabetes-metabolism Research and Reviews | 2007

The C-peptide fragment EVARQ reduces glomerular hyperfiltration in streptozotocin-induced diabetic rats

Lina Nordquist; Erika Moe; Mats Sjöquist

Initially, diabetes is commonly associated with an increased glomerular filtration rate (GFR), a potential mechanism involved in the progression of diabetic nephropathy. Several studies have reported reno‐protective effects of C‐peptide. C‐peptide reduces diabetes‐induced hyperfiltration, as well as renal hypertrophy and albuminuria. In order to gain further understanding of these effects, it is very important to localize the active sites within the C‐peptide molecule. This study was designed to elucidate the effects of the C‐peptide fragment EVARQ on kidney function, blood pressure and blood glucose levels in diabetic rats in vivo.


Current Diabetes Reviews | 2007

Diabetes-induced alterations in renal medullary microcirculation and metabolism.

Lina Nordquist; Fredrik Palm

Diabetes-induced renal complications, i.e. diabetes nephropathy, are a major cause of morbidity and mortality. The exact mechanisms mediating the negative influence of hyperglycemia on renal function are unclear, although several hypotheses have been postulated. Cellular mechanisms include glucose-induced excessive formation of reactive oxygen species, increased glucose flux through polyol pathway and pentose phosphate shunt, formation of advanced glycation end-products and activation of protein kinase C and NADPH oxidase. However, the renal effects in vivo of each and every one of these mechanisms are less clear, although recent studies have shown several major alterations predominantly in the renal medulla as a result of sustained hyperglycemia. Already during normal conditions, the renal medulla has a remarkably low oxygen tension (PO2) and a high degree of non-oxygen dependent energy metabolism. Alterations in either blood perfusion or oxygen delivery to the medullary region will have significant effects on both regional metabolism and total kidney function. Recently, sustained hyperglycemia has been shown to induce a pronounced reduction in preferentially renal medullary PO2. This review will present the current knowledge of diabetes-induced alterations in renal medullary metabolism and function, but also discuss future targets for prevention of diabetic nephropathy.

Collaboration


Dive into the Lina Nordquist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niclas Roxhed

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge