Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lina T. Al Kury is active.

Publication


Featured researches published by Lina T. Al Kury.


PLOS ONE | 2013

Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

Abrar Ashoor; Jacob C. Nordman; Daniel Veltri; Keun-Hang Susan Yang; Lina T. Al Kury; Yaroslav Shuba; Mohamed Mahgoub; Frank Christopher Howarth; Bassem Sadek; Amarda Shehu; Nadine Kabbani; Murat Oz

Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.


British Journal of Pharmacology | 2014

Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes

Lina T. Al Kury; Oleg I. Voitychuk; Keun-Hang Susan Yang; Faisal Thayyullathil; Petro Doroshenko; Ali M Ramez; Yaroslav Shuba; Sehamuddin Galadari; Frank Christopher Howarth; Murat Oz

The endocannabinoid anandamide (N‐arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes.


Journal of Pharmacology and Experimental Therapeutics | 2013

MENTHOL INHIBITS 5-HT3 RECEPTOR-MEDIATED CURRENTS

Abrar Ashoor; Jacob C. Nordman; Daniel Veltri; Keun-Hang Susan Yang; Yaroslav Shuba; Lina T. Al Kury; Bassem Sadek; Frank Christopher Howarth; Amarda Shehu; Nadine Kabbani; Murat Oz

The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10–15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (−), (+), and racemic menthol inhibited 5-HT3 receptor–mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [3H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor–mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.


European Journal of Pharmacology | 2013

Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors

Mohamed Mahgoub; Susan Yang Keun-Hang; Vadym Sydorenko; Abrar Ashoor; Nadine Kabbani; Lina T. Al Kury; Bassem Sadek; Christopher F. Howarth; Dmytro Isaev; Sehamuddin Galadari; Murat Oz

The effects of cannabidiol (CBD), a non-psychoactive ingredient of cannabis plant, on the function of the cloned α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes were tested using the two-electrode voltage-clamp technique. CBD reversibly inhibited ACh (100 μM)-induced currents with an IC50 value of 11.3 µM. Other phytocannabinoids such as cannabinol and Δ(9)-tetrahydrocannabinol did not affect ACh-induced currents. CBD inhibition was not altered by pertussis toxin treatment. In addition, CBD did not change GTP-γ-S binding to the membranes of oocytes injected with α7 nACh receptor cRNA. The effect of CBD was not dependent on the membrane potential. CBD (10 µM) did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels, since the extent of inhibition by CBD was unaltered by intracellular injection of the Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Inhibition by CBD was not reversed by increasing ACh concentrations. Furthermore, specific binding of [(125)I] α-bungarotoxin was not inhibited by CBD (10 µM) in oocytes membranes. Using whole cell patch clamp technique in CA1 stratum radiatum interneurons of rat hippocampal slices, currents induced by choline, a selective-agonist of α7-receptor induced currents were also recoded. Bath application of CBD (10 µM) for 10 min caused a significant inhibition of choline induced currents. Finally, in hippocampal slices, [(3)H] norepinephrine release evoked by nicotine (30 µM) was also inhibited by 10 µM CBD. Our results indicate that CBD inhibits the function of the α7-nACh receptor.


European Journal of Pharmacology | 2011

Effects of phenothiazine-class antipsychotics on the function of α7-nicotinic acetylcholine receptors.

Abrar Ashoor; Dietrich E. Lorke; Syed M. Nurulain; Lina T. Al Kury; Georg A. Petroianu; Keun-Hang Susan Yang; Murat Oz

The effects of phenothiazine-class antipsychotics (chlorpromazine, fluphenazine, phenothiazine, promazine, thioridazine, and triflupromazine) upon the function of the cloned α₇ subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes were tested using the two-electrode voltage-clamp technique. Fluphenazine, thioridazine, triflupromazine, chlorpromazine, and promazine reversibly inhibited acetylcholine (100 μM)-induced currents with IC₅₀ values of 3.8; 5.8; 6.1; 10.6 and 18.3 μM, respectively. Unsubstituted phenothiazine did not have a significant effect up to a concentration of 30 μM. Inhibition was further characterized using fluphenazine, the strongest inhibitor. The effect of fluphenazine was not dependent on the membrane potential. Fluphenazine (10 μM) did not affect the activity of endogenous Ca²⁺-dependent Cl⁻ channels, since the extent of inhibition by fluphenazine was unaltered by intracellular injection of the Ca²⁺ chelator BAPTA and perfusion with Ca²⁺-free bathing solution containing 2 mM Ba²⁺. Inhibition by fluphenazine, but not by chlorpromazine was reversed by increasing acetylcholine concentrations. Furthermore, specific binding of [¹²⁵I] α-bungarotoxin, a radioligand selective for α₇-nicotinic acetylcholine receptor, was inhibited by fluphenazine (10 μM), but not by chlorpromazine in oocyte membranes. In hippocampal slices, epibatidine-evoked [³H] norepinephrine release was also inhibited by fluphenazine (10 μM) and chlorpromazine (10 μM). Our results indicate that phenothiazine-class typical antipsychotics inhibit, with varying potencies, the function of α₇-nicotinic acetylcholine receptor.


Cell Calcium | 2014

Effects of endogenous cannabinoid anandamide on excitation-contraction coupling in rat ventricular myocytes

Lina T. Al Kury; Oleg I. Voitychuk; Ramiz M. Ali; Sehamuddin Galadari; Keun-Hang Susan Yang; Frank Christopher Howarth; Yaroslav Shuba; Murat Oz

A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier reports. In the present study, the effects of AEA on contractility, Ca2+ signaling, and action potential (AP) characteristics were investigated in rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. AEA (1 μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca2+ transients. However, the amplitudes of caffeine-evoked Ca2+ transients and the rate of recovery of electrically evoked Ca2+ transients following caffeine application were not altered. Biochemical studies in sarcoplasmic reticulum (SR) vesicles from rat ventricles indicated that AEA affected Ca2+ -uptake and Ca2+ -ATPase activity in a biphasic manner. [3H]-ryanodine binding and passive Ca2+ release from SR vesicles were not altered by 10 μM AEA. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 μg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists; 0.3 μM) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists; 0.3 μM). The results suggest that AEA depresses ventricular myocyte contractility by decreasing the action potential duration (APD) in a manner independent of CB1 and CB2 receptors.


European Journal of Pharmacology | 2014

Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors

Murat Oz; Lina T. Al Kury; Susan Yang Keun-Hang; Mohamed Mahgoub; Sehamuddin Galadari

Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.


Cell Calcium | 2014

Effects of endogenous cannabinoid anandamide on cardiac Na+/Ca2+ exchanger

Lina T. Al Kury; Keun-Hang Susan Yang; Faisal Thayyullathil; Mohanraj Rajesh; Ramez M. Ali; Yaroslav Shuba; Frank Christopher Howarth; Sehamuddin Galadari; Murat Oz

Endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) has been shown to cause negative inotropic and antiarrhythmic effects in ventricular myocytes. In this study, using whole-cell patch clamp technique, we have investigated the effects of AEA on cardiac Na(+)/Ca(2+) exchanger (NCX1)-mediated currents. AEA suppressed NCX1 with an IC50 value of 4.7 μM. Both inward and outward components of exchanger currents were suppressed by AEA equally. AEA inhibition was mimicked by the metabolically stable analogue, methanandamide (metAEA, 10 μM) while it was not influenced by inhibition of fatty acid amide hydrolase with 1 μM URB597 incubation. The effect of AEA, was not altered in the presence of cannabinoid receptor 1 and 2 antagonists AM251 (1 μM) and AM630 (1 μM), respectively. In addition, inhibition by AEA remained unchanged after pertussis toxin (PTX, 2 μg/ml) treatment or following the inclusion of GDP-β-S (1 mM) in pipette solution. Currents mediated by NCX1 expressed in HEK-293 cells were also inhibited by 10 μM AEA a partially reversible manner. Confocal microscopy images indicated that the intensity of YFP-NCX1 expression on cell surface was not altered by AEA. Collectively, the results indicate that AEA directly inhibits the function of NCX1 in rat ventricular myocytes and in HEK-293 cells expressing NCX1.


Physiological Reports | 2016

Regional effects of streptozotocin-induced diabetes on shortening and calcium transport in epicardial and endocardial myocytes from rat left ventricle

Manal Smail; M. A. Qureshi; Anatoliy Shmygol; Murat Oz; Jaipaul Singh; Vadym Sydorenko; Alya A. Arabi; Frank Christopher Howarth; Lina T. Al Kury

In the heart, the left ventricle pumps blood at higher pressure than the right ventricle. Within the left ventricle, the electromechanical properties of ventricular cardiac myocytes vary transmurally and this may be related to the gradients of stress and strain experienced in vivo across the ventricular wall. Diabetes is also associated with alterations in hemodynamic function. The aim of this study was to investigate shortening and Ca2+ transport in epicardial (EPI) and endocardial (ENDO) left ventricular myocytes in the streptozotocin (STZ)‐induced diabetic rat. Shortening, intracellular Ca2+ and L‐type Ca2+ current (ICa,L) were measured by video detection, fura‐2 microfluorimetry, and whole‐cell patch clamp techniques, respectively. Time to peak (TPK) shortening was prolonged to similar extents in ENDO and EPI myocytes from STZ‐treated rats compared to ENDO and EPI myocytes from controls. Time to half (THALF) relaxation of shortening was prolonged in ENDO myocytes from STZ‐treated rats compared to ENDO controls. TPK Ca2+ transient was prolonged in ENDO myocytes from STZ‐treated rats compared to ENDO controls. THALF decay of the Ca2+ transient was prolonged in ENDO myocytes from STZ‐treated rats compared to ENDO controls. Sarcoplasmic reticulum (SR) fractional release of Ca2+ was reduced in EPI myocytes from STZ‐treated rats compared to EPI controls. ICa,L activation, inactivation, and recovery from inactivation were not significantly altered in EPI and ENDO myocytes from STZ‐treated rats or controls. Regional differences in Ca2+ transport may partly underlie differences in ventricular myocyte shortening across the wall of the healthy and the STZ‐treated rat left ventricle.


Cell Calcium | 2015

Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes

Ramez M. Ali; Lina T. Al Kury; Keun-Hang Susan Yang; Anwar Qureshi; Mohanraj Rajesh; Sehamuddin Galadari; Yaroslav Shuba; Frank Christopher Howarth; Murat Oz

Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca(2+) currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca(2+) transients. However, the amplitudes of caffeine-evoked Ca(2+) transients and the rate of recovery of electrically evoked Ca(2+) transients following caffeine application were not altered. CBD (1μM) significantly decreased the duration of APs. Further studies on L-type Ca(2+) channels indicated that CBD inhibits these channels with IC50 of 0.1μM in a voltage-independent manner. Radioligand studies indicated that the specific binding of [(3)H]Isradipine, was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca(2+) channels at a site different than dihydropyridine binding site and inhibits excitation-contraction coupling in cardiomyocytes.

Collaboration


Dive into the Lina T. Al Kury's collaboration.

Top Co-Authors

Avatar

Murat Oz

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaroslav Shuba

National Academy of Sciences of Ukraine

View shared research outputs
Top Co-Authors

Avatar

Sehamuddin Galadari

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Abrar Ashoor

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Anatoliy Shmygol

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Bassem Sadek

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

M. A. Qureshi

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Jaipaul Singh

University of Central Lancashire

View shared research outputs
Researchain Logo
Decentralizing Knowledge