Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda A. Joyce is active.

Publication


Featured researches published by Linda A. Joyce.


BioScience | 2001

Climate Change and Forest Disturbances

Virginia H. Dale; Linda A. Joyce; Steve McNulty; Ronald P. Neilson; Matthew P. Ayres; Mike D. Flannigan; Paul J. Hanson; Lloyd C. Irland; Ariel E. Lugo; Chris J. Peterson; Daniel Simberloff; Frederick J. Swanson; Brian J. Stocks; B. Michael Wotton

tudies of the effects of climate change on forestshave focused on the ability of species to tolerate tem-perature and moisture changes and to disperse,but they haveignored the effects of disturbances caused by climate change(e.g.,Ojima et al.1991).Yet modeling studies indicate the im-portance of climate effects on disturbance regimes (He et al.1999). Local, regional, and global changes in temperatureand precipitation can influence the occurrence, timing, fre-quency,duration,extent,and intensity of disturbances (Baker1995, Turner et al. 1998). Because trees can survive fromdecades to centuries and take years to become established,climate-change impacts are expressed in forests, in part,through alterations in disturbance regimes (Franklin et al.1992, Dale et al. 2000).Disturbances,both human-induced and natural,shape for-est systems by influencing their composition,structure,andfunctional processes.Indeed,the forests of the United Statesare molded by their land-use and disturbance history.Withinthe United States,natural disturbances having the greatest ef-fects on forests include fire,drought,introduced species,in-sect and pathogen outbreaks, hurricanes, windstorms, icestorms, and landslides (Figure 1). Each disturbance affectsforests differently. Some cause large-scale tree mortality,whereas others affect community structure and organizationwithout causing massive mortality (e.g., ground fires). For-est disturbances influence how much carbon is stored intrees or dead wood. All these natural disturbances interactwith human-induced effects on the environment,such as airpollution and land-use change resulting from resource ex-traction, agriculture, urban and suburban expansion, andrecreation.Some disturbances can be functions of both nat-ural and human conditions (e.g., forest fire ignition andspread) (Figure 2).


Journal of Biogeography | 1995

Equilibrium Responses of Soil Carbon to Climate Change: Empirical and Process-Based Estimates

A. David McGuire; Jerry M. Melillo; David W. Kicklighter; Linda A. Joyce

We use a new version of the Terrestrial Ecosystem Model (TEM), which has been parameterized to control for reactive soil organic carbon (SOC) across climatic gradients, to evaluate the sensitivity of SOC to a 1?C warming in both empirical and process-based analyses. In the empirical analyses we use the steady state SOC estimates of TEM to derive SOC-response equations that depend on temperature and volumetric soil moisture, and extrapolate them across the terrestrial biosphere at 0.50 spatial resolution. For contemporary climate and atmospheric C02, mean annual temperature explains 34.8% of the variance in the natural logarithm of TEM-estimated SOC. Because the inclusion of mean annual volumetric soil moisture in the regression explains an additional 19.6%, a soil moisture term in an equation of SOC response should improve estimates. For a 1?C warming, the globally derived empirical model estimates a terrestrial SOC loss of 22.6 1015 g (Pg), with 77.9% of the loss in extra-tropical ecosystems. To explore whether loss estimates of SOC are affected by the spatial scale at which the response equations are derived, we derive equations for each of the eighteen ecosystems considered in this study. The sensitivity of terrestrial SOC estimated by summing the losses predicted by each of the ecosystem empirical models is greater (27.9 Pg per ?C) than that estimated by the global empirical model; the 12.2 Pg loss (43.7%) in tropical ecosystems suggests that they may be more sensitive to warming. The global process-based loss of SOC estimated by TEM in response to a 1?C warming (26.3 Pg) is similar to the sum of the ecosystem empirical losses, but the 13.6 Pg loss (51.7%) in extra-tropical ecosystems suggests that they may be slightly less sensitive to warming. For the modelling of SOC responses, these results suggest that soil moisture is useful to incorporate in empirical models of SOC response and that globally derived empirical models may conceal regional sensitivity of SOC to warming. The analyses in this study suggest that the maximum loss of SOC to the atmosphere per?C warming is less than 2% of the terrestrial soil carbon inventory. Because the NPP response to elevated CO2 has the potential to compensate for this loss, the scenario of warming enhancing soil carbon loss to further enhance warming is unlikely in the absence of land use or changes in vegetation distribution.


Science of The Total Environment | 2000

The interplay between climate change, forests, and disturbances

Virginia H. Dale; Linda A. Joyce; Steve McNulty; Ronald P. Neilson

Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently. Some disturbances have tight interactions with the species and forest communities which can be disrupted by climate change. Impacts of disturbances and thus of climate change are seen over a board spectrum of spatial and temporal scales. Future observations, research, and tool development are needed to further understand the interactions between climate change and forest disturbances.


Climatic Change | 1993

Productivity response of climax temperate forests to elevated temperature and carbon dioxide: a north american comparison between two global models

A.D. McGuire; Linda A. Joyce; David W. Kicklighter; Jerry M. Melillo; Gerd Esser; Charles J. Vörösmarty

We assess the appropriateness of using regression- and process-based approaches for predicting biogeochemical responses of ecosystems to global change. We applied a regression-based model, the Osnabruck Model (OBM), and a process-based model, the Terrestrial Ecosystem Model (TEM), to the historical range of temperate forests in North America in a factorial experiment with three levels of temperature (+0 °C, +2 °C, and +5 °C) and two levels of CO2 (350 ppmv and 700 ppmv) at a spatial resolution of 0.5° latitude by 0.5° longitude. For contemporary climate (+0 °C, 350 ppmv), OBM and TEM estimate the total net primary productivity (NPP) for temperate forests in North America to be 2.250 and 2.602 × 1015 g C ⋅ yr−1, respectively. Although the continental predictions for contemporary climate are similar, the responses of NPP to altered climates qualitatively differ; at +0 °C and 700 ppmv CO2, OBM and TEM predict median increases in NPP of 12.5% and 2.5%, respectively. The response of NPP to elevated temperature agrees most between the models in northern areas of moist temperate forest, but disagrees in southern areas and in regions of dry temperate forest. In all regions, the response to CO2 is qualitatively different between the models. These differences occur, in part, because TEM includes known feedbacks between temperature and ecosystem processes that affect N availability, photosynthesis, respiration, and soil moisture. Also, it may not be appropriate to extrapolate regression-based models for climatic conditions that are not now experienced by ecosystems. The results of this study suggest that the process-based approach is able to progress beyond the limitations of the regression-based approach for predicting biogeochemical responses to global change.


Climatic Change | 2002

Impacts of Climate Change on the Global Forest Sector

John Perez-Garcia; Linda A. Joyce; A. David McGuire; Xiangming Xiao

The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors that strongly influence the effects of climate change on the global forest sector.


Environmental Management | 2009

Managing for Multiple Resources Under Climate Change: National Forests

Linda A. Joyce; Geoffrey M. Blate; Steven G. McNulty; Constance I. Millar; Susanne C. Moser; Ronald P. Neilson; David L. Peterson

This study explores potential adaptation approaches in planning and management that the United States Forest Service might adopt to help achieve its goals and objectives in the face of climate change. Availability of information, vulnerability of ecological and socio-economic systems, and uncertainties associated with climate change, as well as the interacting non-climatic changes, influence selection of the adaptation approach. Resource assessments are opportunities to develop strategic information that could be used to identify and link adaptation strategies across planning levels. Within a National Forest, planning must incorporate the opportunity to identify vulnerabilities to climate change as well as incorporate approaches that allow management adjustments as the effects of climate change become apparent. The nature of environmental variability, the inevitability of novelty and surprise, and the range of management objectives and situations across the National Forest System implies that no single approach will fit all situations. A toolbox of management options would include practices focused on forestalling climate change effects by building resistance and resilience into current ecosystems, and on managing for change by enabling plants, animals, and ecosystems to adapt to climate change. Better and more widespread implementation of already known practices that reduce the impact of existing stressors represents an important “no regrets” strategy. These management opportunities will require agency consideration of its adaptive capacity, and ways to overcome potential barriers to these adaptation options.


Landscape Ecology | 1996

Forest roads and landscape structure in the southern Rocky Mountains

James R. Miller; Linda A. Joyce; Richard L. Knight; Rudy M. King

Roadless areas on public lands may serve as environmental baselines against which human-caused impacts on landscape structure can be measured. We examined landscape structure across a gradient of road densities, from no roads to heavily roaded, and across several spatial scales. Our study area was comprised of 46,000 ha on the Roosevelt National Forest in north-central Colorado. When forest stands were delineated on the basis of seral stage and covertype, no relationship was evident between average stand size and road density. Topography appeared to exert a greater influence on average stand size than did road density. There was a significant positive correlation between the fractal dimension of forest stands and road density across all scales. Early-seral stands existed in greater proportions adjacent to roads, suggesting that the effects of roads on landscape structure are somewhat localized. We also looked at changes in landscape structure when stand boundaries were delineated by roads in addition to covertype and seral stage. Overall, there was a large increase in small stands with simple shapes, concurrent with a decline in the number of stands > 100 ha. We conclude that attempts to quantify the departure from naturalness in roaded areas requires an understanding of the factors controlling the structure of unroaded landscapes, particularly where the influence of topography is great. Because roads in forested landscapes influence a variety of biotic and abiotic processes, we suggest that roads should be considered as an inherent component of landscape structure. Furthermore, plans involving both the routing of new roads and the closure of existing ones should be designed so as to optimize the structure of landscape mosaics, given a set of conservation goals.


Climatic Change | 2003

UNDERSTANDING CLIMATIC IMPACTS, VULNERABILITIES, AND ADAPTATION IN THE UNITED STATES: BUILDING A CAPACITY FOR ASSESSMENT

Edward A. Parson; Robert W. Corell; Eric J. Barron; Virginia Burkett; Anthony C. Janetos; Linda A. Joyce; Thomas R. Karl; Michael C. MacCracken; Jerry M. Melillo; M. Granger Morgan; David S. Schimel; Thomas J. Wilbanks

Based on the experience of the U.S. National Assessment, we propose a program of research and analysis to advance capability for assessment of climate impacts, vulnerabilities, and adaptation options. We identify specific priorities for scientific research on the responses of ecological and socioeconomic systems to climate and other stresses; for improvement in the climatic inputs to impact assessments; and for further development of assessment methods to improve their practical utility to decision-makers. Finally, we propose a new institutional model for assessment, based principally on regional efforts that integrate observations, research, data, applications, and assessment on climate and linked environmental-change issues. The proposed program will require effective collaboration between scientists, resource managers, and other stakeholders, all of whose expertise is needed to define and prioritize key regional issues, characterize relevant uncertainties, and assess potential responses. While both scientifically and organizationally challenging, such an integrated program holds the best promise of advancing our capacity to manage resources and the economy adaptively under a changing climate.


Journal of Biogeography | 1995

Forest Sector Impacts from Changes in Forest Productivity Under Climate Change

Linda A. Joyce; John R. Mills; Linda S. Heath; Anthony Mcguire; Richard W. Haynes; Richard A. Birdsey

The consequences of elevated carbon dioxide and climate change on forest systems and the role that economics could play in timber harvest and vegetation change have not been addressed together. A framework was developed to link climate change scenarios, an ecosystem model, a forest sector model and a carbon accounting model. Four climate scenarios were used to estimate net primary productivity (NPP) for forests in the United States. Changes in NPP were estimated using TEM, the Terrestrial Ecosystem Model which uses spatially referenced information on climate, soils and vegetation to estimate important carbon and nitrogen fluxes and pool sizes within ecosystems at the continental scale. Changes in NPP under climate change were used to modify timber growth within the Aggregate Timberland Assessment Model (ATLAS), which is a part of the forest sector model (TAMMATLAS) used by the Forest Service to examine timber policy questions. The changes in timber inventories were then translated into changes in the amount of carbon stored on private timberlands using a national carbon model (FORCARB). Regional changes in productivity filter through the forest sector and result in changes in land use and timber consumption. Long-term changes in carbon storage indicate that these private timberlands will be a source of carbon dioxide for all but the most optimistic climate change scenario.


Archive | 2011

Responding to climate change in national forests: a guidebook for developing adaptation options

David L. Peterson; Connie I. Millar; Linda A. Joyce; Michael J. Furniss; Jessica E. Halofsky; Ronald P. Neilson; Toni Lyn. Morelli

This guidebook contains science-based principles, processes, and tools necessary to assist with developing adaptation options for national forest lands. The adaptation process is based on partnerships between local resource managers and scientists who work collaboratively to understand potential climate change effects, identify important resource issues, and develop management options that can capitalize on new opportunities and reduce deleterious effects. Because management objectives and sensitivity of resources to climate change differ among national forests, appropriate processes and tools for developing adaptation options may also differ. Regardless of specific processes and tools, the following steps are recommended: (1) become aware of basic climate change science and integrate that understanding with knowledge of local resource conditions and issues (review), (2) evaluate sensitivity of specific natural resources to climate change (rank), (3) develop and implement strategic and tactical options for adapting resources to climate change (resolve), and (4) monitor the effectiveness of adaptation options (observe) and adjust management as needed. Results of recent case studies on adaptation in national forests and national parks can facilitate integration of climate change in resource management and planning and make the adaptation process more efficient. Adaptation to climate change will be successful only if it can be fully implemented in established planning processes and other operational aspects of national forest management.

Collaboration


Dive into the Linda A. Joyce's collaboration.

Top Co-Authors

Avatar

David L. Peterson

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

A. David McGuire

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Constance I. Millar

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Jerry M. Melillo

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ronald P. Neilson

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Richard A. Birdsey

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

David W. Kicklighter

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. D. McGuire

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge