Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda A. Schuler is active.

Publication


Featured researches published by Linda A. Schuler.


Lab on a Chip | 2009

Biological implications of polydimethylsiloxane-based microfluidic cell culture

Keil J. Regehr; Maribella Domenech; Justin T. Koepsel; Kristopher C. Carver; Stephanie J. Ellison-Zelski; William L. Murphy; Linda A. Schuler; Elaine T. Alarid; David J. Beebe

Polydimethylsiloxane (PDMS) has become a staple of the microfluidics community by virtue of its simple fabrication process and material attributes, such as gas permeability, optical transparency, and flexibility. As microfluidic systems are put toward biological problems and increasingly utilized as cell culture platforms, the material properties of PDMS must be considered in a biological context. Two properties of PDMS were addressed in this study: the leaching of uncured oligomers from the polymer network into microchannel media, and the absorption of small, hydrophobic molecules (i.e. estrogen) from serum-containing media into the polymer bulk. Uncured PDMS oligomers were detectable via MALDI-MS in microchannel media both before and after Soxhlet extraction of PDMS devices in ethanol. Additionally, PDMS oligomers were identified in the plasma membranes of NMuMG cells cultured in PDMS microchannels for 24 hours. Cells cultured in extracted microchannels also contained a detectable amount of uncured PDMS. It was shown that MCF-7 cells seeded directly on PDMS inserts were responsive to hydrophilic prolactin but not hydrophobic estrogen, reflecting its specificity for absorbing small, hydrophobic molecules; and the presence of PDMS floating in wells significantly reduced cellular response to estrogen in a serum-dependent manner. Quantification of estrogen via ELISA revealed that microchannel estrogen partitioned rapidly into the surrounding PDMS to a ratio of approximately 9:1. Pretreatments such as blocking with serum or pre-absorbing estrogen for 24 hours did not affect estrogen loss from PDMS-based microchannels. These findings highlight the importance of careful consideration of culture system properties when determining an appropriate environment for biological experiments.


Oncogene | 2003

Prolactin induces ERα-positive and ERα-negative mammary cancer in transgenic mice

Teresa A. Rose-Hellekant; Lisa M. Arendt; Matthew D. Schroeder; Kennedy W. Gilchrist; Eric P. Sandgren; Linda A. Schuler

The role of prolactin in human breast cancer has been controversial. However, it is now apparent that human mammary epithelial cells can synthesize prolactin endogenously, permitting autocrine/paracrine actions within the mammary gland that are independent of pituitary prolactin. To model this local mammary production of prolactin (PRL), we have generated mice that overexpress prolactin within mammary epithelial cells under the control of a hormonally nonresponsive promoter, neu-related lipocalin (NRL). In each of the two examined NRL-PRL transgenic mouse lineages, female virgin mice display mammary developmental abnormalities, mammary intraepithelial neoplasias, and invasive neoplasms. Prolactin increases proliferation in morphologically normal alveoli and ducts, as well as in lesions. The tumors are of varied histotype, but papillary adenocarcinomas and adenosquamous neoplasms predominate. Neoplasms can be separated into two populations: one is estrogen receptor alpha (ERα) positive (greater than 15% of the cells stain for ERα), and the other is ERα− (<3%). ERα expression does not correlate with tumor histotype, or proliferative or apoptotic indices. These studies provide a mouse model of hormonally dependent breast cancer, and, perhaps most strikingly, a model in which some neoplasms retain ERα, as occurs in the human disease.


Biology of Reproduction | 2000

Prolactin Receptor and Uterine Milk Protein Expression in the Ovine Endometrium During the Estrous Cycle and Pregnancy

M. David Stewart; Greg A. Johnson; C. Allison Gray; Robert C. Burghardt; Linda A. Schuler; Margaret M. Joyce; Fuller W. Bazer; Thomas E. Spencer

Abstract Lactogenic hormones regulate epithelial proliferation, differentiation, and function in a variety of epitheliomesenchymal organs. During pregnancy, the ovine uterus is a potential site for endocrine and paracrine actions of lactogenic hormones in the form of pituitary prolactin (PRL) and placental lactogen (PL). These studies determined temporal and spatial alterations in PRL receptor (PRL-R) and expression of uterine milk proteins (UTMP), a marker of endometrial secretory activity, in the ovine endometrium during the estrous cycle and pregnancy. Slot-blot hybridization analysis indicated that steady-state levels of endometrial PRL-R mRNA increased during pregnancy. In situ hybridization and immunohistochemical analyses indicated that PRL-R mRNA and protein were exclusively expressed in the endometrial glandular epithelium (GE). No PRL-R mRNA expression was detected in luminal epithelium, stroma, myometrium, or conceptus trophectoderm. Reverse transcription-polymerase chain reaction analyses determined that the endometrial GE expressed both long and short alternative splice forms of the ovine PRL-R gene. Slot-blot hybridization analysis indicated that steady-state levels of intercaruncular endometrial UTMP mRNA increased about 3-fold between Days 20 and 60, increased another 3-fold between Days 60 and 80, and then declined slightly to Day 120. In pregnant ewes, UTMP mRNA expression was restricted to the endometrial GE in the stratum spongiosum (sGE), increased substantially between Days 15 and 17, and, between Days 17 to 50 of gestation, was markedly higher in upper than lower sGE. After Day 50, hyperplasia of the sGE was accompanied by increased UTMP mRNA expression by all sGE. Collectively, results indicate that 1) endometrial sGE is a primary target for actions of lactogenic hormones and 2) UTMP mRNA expression is correlated with PL production by the trophectoderm and state of sGE differentiation during pregnancy. It is proposed that activation of PRL-R signal transduction pathways by PRL and PL plays a major role in endometrial GE remodeling and differentiated function during pregnancy in support of conceptus growth and development.


The Journal of Steroid Biochemistry and Molecular Biology | 2004

Endogenous human prolactin and not exogenous human prolactin induces estrogen receptor α and prolactin receptor expression and increases estrogen responsiveness in breast cancer cells

Jennifer H. Gutzman; Kristin K Miller; Linda A. Schuler

Prolactin (PRL) and estrogen act synergistically to increase mammary gland growth, development, and differentiation. Based on their roles in the normal gland, these hormones have been studied to determine their interactions in the development and progression of breast cancer. However, most studies have evaluated only endocrine PRL and did not take into account the recent discovery that PRL is synthesized by human mammary cells, permitting autocrine/paracrine activity. To examine the effects of this endogenous PRL, we engineered MCF7 cells to inducibly overexpress human prolactin (hPRL). Using this Tet-On MCF7hPRL cell line, we studied effects on cell growth, PRLR, ER alpha, and PgR levels, and estrogen target genes. Induced endogenous hPRL, but not exogenous hPRL, increased ER alpha levels as well as estrogen responsiveness in these cells, suggesting that effects on breast cancer development and progression by estrogen may be amplified by cross-regulation of ER alpha levels by endogenous hPRL. The long PRLR isoform was also upregulated by endogenous, but not exogenous PRL. This model will allow investigation of endogenous hPRL in mammary epithelial cells and will enable further dissection of PRL effects on other hormone signaling pathways to determine the role of PRL in breast cancer.


Journal of Biological Chemistry | 2013

Stiff Collagen Matrices Increase Tumorigenic Prolactin Signaling in Breast Cancer Cells

Craig E. Barcus; Patricia J. Keely; Kevin W. Eliceiri; Linda A. Schuler

Background: Prolactin, but not its best studied mediator STAT5a, is associated with breast cancer progression. Results: In stiff but not compliant collagen matrices, prolactin promotes tumorigenic processes via an enhanced ERK1/2 cascade. Conclusion: Extracellular matrix stiffness powerfully modulates the spectrum of prolactin signals and actions. Significance: Prolactin and stiff matrices interact in a feed-forward loop in breast cancer, suggesting new therapeutic approaches. Clinically, circulating prolactin levels and density of the extracellular matrix (ECM) are individual risk factors for breast cancer. As tumors develop, the surrounding stroma responds with increased deposition and cross-linking of the collagen matrix (desmoplasia). In mouse models, prolactin promotes mammary carcinomas that resemble luminal breast cancers in women, and increased collagen density promotes tumor metastasis and progression. Although the contributions of the ECM to the physiologic actions of prolactin are increasingly understood, little is known about the functional relationship between the ECM and prolactin signaling in breast cancer. Here, we examined consequences of increased ECM stiffness on prolactin signals to luminal breast cancer cells in three-dimensional collagen I matrices in vitro. We showed that matrix stiffness potently regulates a switch in prolactin signals from physiologic to protumorigenic outcomes. Compliant matrices promoted physiological prolactin actions and activation of STAT5, whereas stiff matrices promoted protumorigenic outcomes, including increased matrix metalloproteinase-dependent invasion and collagen scaffold realignment. In stiff matrices, prolactin increased SRC family kinase-dependent phosphorylation of focal adhesion kinase (FAK) at tyrosine 925, FAK association with the mitogen-activated protein kinase mediator GRB2, and pERK1/2. Stiff matrices also increased co-localization of prolactin receptors and integrin-activated FAK, implicating altered spatial relationships. Together, these results demonstrate that ECM stiffness is a powerful regulator of the spectrum of prolactin signals and that stiff matrices and prolactin interact in a feed-forward loop in breast cancer progression. Our study is the first reported evidence of altered ECM-prolactin interactions in breast cancer, suggesting the potential for new therapeutic approaches.


Molecular and Cellular Endocrinology | 2005

Prolactin signals via Stat5 and Oct-1 to the proximal cyclin D1 promoter.

Jennifer L. Brockman; Linda A. Schuler

Prolactin (PRL) modulates proliferation in the mammary gland and other tissues, in part through inducing transcription of cyclin D1, a key regulator of G(1) phase cell cycle progression. We showed previously that PRL, via Jak2, induces binding of Stat5 to a distal GAS site (GAS1) in the cyclin D1 promoter. However, full promoter activity requires additional regions, and in this paper we explored PRL-induced activity at sites other than GAS1. We defined a second PRL-responsive region spanning -254 to -180 that contains a second GAS site (GAS2) and an Oct-1 binding site. Although mutational analysis indicated independence from GAS2, proximal promoter activity remained Stat5-dependent, suggesting alternative mechanisms. EMSA showed that Oct-1 binds the -254 to -180 region and that PRL decreased Oct-1 binding, leading to increased PRL-responsiveness of the proximal cyclin D1 promoter in multiple cell lines. This suggests a role for Oct-1 in PRL-dependent control of cyclin D1 transcription.


Oncogene | 2007

Stat5 activation inhibits prolactin-induced AP-1 activity: distinct prolactin-initiated signals in tumorigenesis dependent on cell context

Jennifer H. Gutzman; Debra E. Rugowski; Se Nikolai; Linda A. Schuler

The essential role of prolactin (PRL) in normal mammary gland growth and differentiation has implicated this hormone in the development and progression of breast cancer. Although Stat5 is the best-characterized mediator of PRL signals, PRL also activates multiple other signals, whose roles in normal and pathologic processes are not well understood. We have shown that PRL stimulates activating protein-1 (AP-1) activity in breast cancer cells, and can cooperate with estradiol in this pathway. AP-1 modulates many processes critical for carcinogenesis, including cell proliferation, survival, transformation, invasion and angiogenesis, and is elevated in many neoplasms, including breast tumors. Here, we investigated the relationship between PRL signals to AP-1 and Stat5. We found that PRL activation of Stat5a and Stat5b, but not Stat1 or Stat3, reduced PRL signals to AP-1, without altering estradiol-induced AP-1 activity. The truncation mutant, Stat5/Δ53C, but not Stat5Y699F, was an effective inhibitor, consistent with a requirement for Stat5 dimerization and nuclear accumulation, but not its C-terminal transactivation activity. The association of Stat5 with AP-1 proteins suggests that this underlies the inhibition. Predictably, the ability of PRL to activate Stat5 and AP-1 was inversely related in mammary cell lines. Further, reduction of Stat5 protein with siRNA in T47D cells, which contain elevated Stat5, increased PRL-induced AP-1 signals, transcripts for the AP-1 target, matrix metalloproteinase-2 and associated invasive behavior. This study points to the importance of cell context in determining the spectrum of PRL-induced actions, which is critical for understanding the contributions of PRL to breast cancer.


Molecular and Cellular Endocrinology | 2009

Complex prolactin crosstalk in breast cancer: New therapeutic implications

Kristopher C. Carver; Lisa M. Arendt; Linda A. Schuler

The contributions of prolactin (PRL) to breast cancer are becoming increasingly recognized. To better understand the role for PRL in this disease, its interactions with other oncogenic growth factors and hormones must be characterized. Here, we review our current understanding of PRL crosstalk with other mammary oncogenic factors, including estrogen, epidermal growth factor (EGF) family members, and insulin-like growth factor-I (IGF-I). The ability of PRL to potentiate the actions of these targets of highly successful endocrine and molecular therapies suggests that PRL and/or its receptor (PRLR) may be an attractive therapeutic target(s). We discuss the potential benefit of PRL/PRLR-targeted therapy in combination with established therapies and implications for de novo and acquired resistance to treatment.


Oncogene | 2010

Janus kinase 2 is required for the initiation but not maintenance of prolactin-induced mammary cancer

Kazuhito Sakamoto; Aleata A. Triplett; Linda A. Schuler; Kay-Uwe Wagner

The prolactin receptor (PRLR), its associated Janus kinase 2 (Jak2) and the signal transducer and activator of transcription 5 (Stat5) are essential for normal mammary gland development. Owing to the upregulation of the PRLR and the local synthesis of its ligand in neoplastic cells, it has been proposed that PRL can act as a local growth factor in human breast cancers. This notion is supported by experimental evidence in transgenic mice, which showed that the mammary-specific expression of PRL contributes to carcinogenesis in vivo. To assess the importance of Jak2/Stat5 signaling during mammary cancer initiation and progression, we generated a PRL-induced mammary cancer model that allows the functional ablation of the Jak2 gene in the mammary epithelium before and after neoplastic transformation. Collectively, the results of this study show that the functional ablation of Jak2 protects against the onset of PRL-induced mammary tumorigenesis, suggesting that targeting this kinase is a relevant strategy for mammary cancer prevention. Surprisingly, Jak2 deficiency did not affect the growth and survival of PRL-induced mammary cancer cells in culture and in vivo. Consequently, Jak2 cannot be a sole therapeutic target to treat the established disease. PRL-induced mammary cancers exhibited an upregulation of ErbB2 and other ErbB receptor tyrosine kinases that may supersede the functionality of PRLR signaling through Jak2.


Molecular and Cellular Endocrinology | 1997

Regulation of interleukin (IL)-1α, IL-1β, and IL-6 expression by growth hormone and prolactin in bovine thymic stromal cells

Yu-Hua Tseng; Mark A. Kessler; Linda A. Schuler

Abstract Growth hormone (GH) and prolactin (PRL) have been implicated in T-cell development, but relatively little is known about the mechanism(s) of their actions on the multiple cell types in this complex tissue. Here, we investigated the effects of GH and PRL on the expression of interleukin (IL)-1α, IL-1β and IL-6 in thymic stromal cells (TSC). These cytokine mRNAs were increased by GH, PRL and placental lactogen (PL) in primary cultures prepared from mid-gestational fetuses in a dose-dependent manner. IL-1 receptor antagonist (IL-1ra) abolished the hormone-induced IL-6 expression, suggesting that the induction of IL-6 was secondary to IL-1 activity. To examine the effects of these hormones on an individual cell type and develop a system in which signalling mechanisms can be studied, we generated immortalized cell lines using a strategy of conditional transformation. In the cell line, TSC-936, which displayed vimentin-positive staining and morphological characteristics of mesenchymal cells, both GH and PRL increased levels of steady-state mRNAs for IL-1α and IL-1β. Nuclear run-on analysis revealed that the transcription rate of the IL-1β gene was significantly increased by GH and PRL at 30 and 60 min, respectively, but that for IL-1α was not significantly changed, suggesting the possibility of an alternative mechanism mediating this response. These data suggest that modulation of cytokine gene expression is one mechanism by which GH and PRL facilitate thymic development and T-cell maturation.

Collaboration


Dive into the Linda A. Schuler's collaboration.

Top Co-Authors

Avatar

Debra E. Rugowski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kathleen A. O'Leary

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mark A. Kessler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Craig E. Barcus

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kevin W. Eliceiri

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia J. Keely

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Schroeder

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Brockman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kristopher C. Carver

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge