Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Bowman is active.

Publication


Featured researches published by Linda Bowman.


Journal of Biological Chemistry | 2005

Inhibition of Activator Protein-1, NF-κB, and MAPKs and Induction of Phase 2 Detoxifying Enzyme Activity by Chlorogenic Acid

Rentian Feng; Yongju Lu; Linda Bowman; Yong Qian; Vincent Castranova; Min Ding

Chlorogenic acid, the ester of caffeic acid with quinic acid, is one of the most abundant polyphenols in the human diet. The antioxidant and anticarcinogenic properties of chlorogenic acid have been established in animal studies. However, little is known about the molecular mechanisms through which chlorogenic acid inhibits carcinogenesis. In this study, we found that chlorogenic acid inhibited the proliferation of A549 human cancer cells in vitro. The results of the soft agar assay indicated that chlorogenic acid suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ cells in a dose-dependent manner. Pretreatment of JB6 cells with chlorogenic acid blocked UVB- or TPA-induced transactivation of AP-1 and NF-κB over the same dose range. At low concentrations, chlorogenic acid decreased the phosphorylation of c-Jun NH2-terminal kinases, p38 kinase, and MAPK kinase 4 induced by UVB/12-O-tetradecanoylphorbol-13-acetate, yet higher doses were required to inhibit extracellular signal-regulated kinases. Chlorogenic acid also increased the enzymatic activities of glutathione S-transferases (GST) and NAD(P)H: quinone oxidoreductase. Further studies indicated that chlorogenic acid could stimulate the nuclear translocation of Nrf2 (NF-E2-related factor) as well as subsequent induction of GSTA1 antioxidant response element (ARE)-mediated GST activity. The phosphatidylinositol 3-kinase pathway might be involved in the activation of Nrf2 translocation. These results provide the first evidence that chlorogenic acid could protect against environmental carcinogen-induced carcinogenesis and suggest that the chemopreventive effects of chlorogenic acid may be through its up-regulation of cellular antioxidant enzymes and suppression of ROS-mediated NF-κB, AP-1, and MAPK activation.


Journal of Biological Chemistry | 2005

Inhibition of AP-1, NF-κB and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid

Rentian Feng; Yongju Lu; Linda Bowman; Yong Qian; Vincent Castranova; Min Ding

Chlorogenic acid, the ester of caffeic acid with quinic acid, is one of the most abundant polyphenols in the human diet. The antioxidant and anticarcinogenic properties of chlorogenic acid have been established in animal studies. However, little is known about the molecular mechanisms through which chlorogenic acid inhibits carcinogenesis. In this study, we found that chlorogenic acid inhibited the proliferation of A549 human cancer cells in vitro. The results of the soft agar assay indicated that chlorogenic acid suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ cells in a dose-dependent manner. Pretreatment of JB6 cells with chlorogenic acid blocked UVB- or TPA-induced transactivation of AP-1 and NF-κB over the same dose range. At low concentrations, chlorogenic acid decreased the phosphorylation of c-Jun NH2-terminal kinases, p38 kinase, and MAPK kinase 4 induced by UVB/12-O-tetradecanoylphorbol-13-acetate, yet higher doses were required to inhibit extracellular signal-regulated kinases. Chlorogenic acid also increased the enzymatic activities of glutathione S-transferases (GST) and NAD(P)H: quinone oxidoreductase. Further studies indicated that chlorogenic acid could stimulate the nuclear translocation of Nrf2 (NF-E2-related factor) as well as subsequent induction of GSTA1 antioxidant response element (ARE)-mediated GST activity. The phosphatidylinositol 3-kinase pathway might be involved in the activation of Nrf2 translocation. These results provide the first evidence that chlorogenic acid could protect against environmental carcinogen-induced carcinogenesis and suggest that the chemopreventive effects of chlorogenic acid may be through its up-regulation of cellular antioxidant enzymes and suppression of ROS-mediated NF-κB, AP-1, and MAPK activation.


Journal of Biological Chemistry | 2006

Cyanidin-3-glucoside, a Natural Product Derived from Blackberry, Exhibits Chemopreventive and Chemotherapeutic Activity

Min Ding; Rentian Feng; Shiow Y. Wang; Linda Bowman; Yongju Lu; Yong Qian; Vincent Castranova; Bing-Hua Jiang; Xianglin Shi

Epidemiological data suggest that consumption of fruits and vegetables has been associated with a lower incidence of cancer. Cyanidin-3-glucoside (C3G), a compound found in blackberry and other food products, was shown to possess chemopreventive and chemotherapeutic activity in the present study. In cultured JB6 cells, C3G was able to scavenge ultraviolet B-induced ·OH and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} radicals. In vivo studies indicated that C3G treatment decreased the number of non-malignant and malignant skin tumors per mouse induced by 12-O-tetradecanolyphorbol-13-acetate (TPA) in 7,12-dimethylbenz[a]anthracene-initiated mouse skin. Pretreatment of JB6 cells with C3G inhibited UVB- and TPA-induced transactivation of NF-κB and AP-1 and expression of cyclooxygenase-2 and tumor necrosis factor-α. These inhibitory effects appear to be mediated through the inhibition of MAPK activity. C3G also blocked TPA-induced neoplastic transformation in JB6 cells. In addition, C3G inhibited proliferation of a human lung carcinoma cell line, A549. Animal studies showed that C3G reduced the size of A549 tumor xenograft growth and significantly inhibited metastasis in nude mice. Mechanistic studies indicated that C3G inhibited migration and invasion of A549 tumor cells. These finding demonstrate for the first time that a purified compound of anthocyanin inhibits tumor promoter-induced carcinogenesis and tumor metastasis in vivo.


Journal of Toxicology and Environmental Health | 2009

Titanium Dioxide (TiO2) Nanoparticles Induce JB6 Cell Apoptosis Through Activation of the Caspase-8/Bid and Mitochondrial Pathways

Jinshun Zhao; Linda Bowman; Xingdong Zhang; Val Vallyathan; Shih-Houng Young; Vincent Castranova; Min Ding

Titanium dioxide (TiO2), a commercially important material, is used in a wide variety of products. Although TiO2 is generally regarded as nontoxic, the cytotoxicity, pathogenicity, and carcinogenicity of TiO2 nanoparticles have been recently recognized. The present study investigated TiO2 nanoparticle-induced cell apoptosis and molecular mechanisms involved in this process in a mouse epidermal (JB6) cell line. Using the 3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay, TiO2 nanoparticles were found to exhibit higher cytotoxicity than fine particles. YO-PRO-1 iodide (YP) staining demonstrated that both TiO2 nanoparticles and fine particles induced cell death through apoptosis. The signaling pathways involved in TiO2 particle-induced apoptosis were investigated. Western-blot analysis showed an activation of caspase-8, Bid, BAX, and caspase-3 and a decrease of Bcl-2 in JB6 cells treated with TiO2 particles. Time-dependent poly(ADP)ribose polymerase (PARP) cleavage induced by TiO2 nanoparticles was observed. TiO2 particles also induced cytochrome c release from mitochondria to cytosol. Further studies demonstrated that TiO2 nanoparticles induced significant changes in mitochondrial membrane permeability, suggesting the involvement of mitochondria in the apoptotic process. In conclusion, evidence indicated that TiO2 nanoparticles exhibit higher cytotoxicity and apoptotic induction compared to fine particles in JB6 cells. Caspase-8/Bid and mitochondrial signaling may play a major role in TiO2 nanoparticle-induced apoptosis involving the intrinsic mitochondrial pathway. Unraveling the complex mechanisms associated with these events may provide further insights into TiO2 nanoparticle-induced pathogenicity and potential to induce carcinogenicity.


Experimental and Therapeutic Medicine | 2012

Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review)

Ruth Magaye; Jinshun Zhao; Linda Bowman; Min Ding

The nanotechnology industry has matured and expanded at a rapid pace in the last decade, leading to the research and development of nanomaterials with enormous potential. The largest source of these nanomaterials is the transitional metals. It has been revealed that numerous properties of these nano-sized elements are not present in their bulk states. The nano size of these particles means they are easily transported into biological systems, thus, raising the question of their effects on the susceptible systems. Although advances have been made and insights have been gained on the effect of transitional metals on susceptible biological systems, there still is much ground to be covered, particularly with respect to our knowledge on the genotoxic and carcinogenic effects. Therefore, this review intends to summarize the current knowledge on the genotoxic and carcinogenic potential of cobalt-, nickel- and copper-based nanoparticles indicated in in vitro and in vivo mammalian studies. In the present review, we briefly state the sources, use and exposure routes of these nanoparticles and summarize the current literature findings on their in vivo and in vitro genotoxic and carcinogenic effects. Due to the increasing evidence of their role in carcinogenicity, we have also included studies that have reported epigenetic factors, such as abnormal apoptosis, enhanced oxidative stress and pro-inflammatory effects involving these nanoparticles.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1998

Constitutive nitric oxide production by rat alveolar macrophages

P. R. Miles; Linda Bowman; A. Rengasamy; L. Huffman

Results from previous studies suggest that alveolar macrophages must be exposed to inflammatory stimuli to produce nitric oxide (.NO). In this study, we report that naive unstimulated rat alveolar macrophages do produce .NO and attempt to characterize this process. Western blot analysis demonstrates that the enzyme responsible is an endothelial nitric oxide synthase (eNOS). No brain or inducible NOS can be detected. The rate of .NO production is approximately 0.07 nmol.10(6) cells-1.h-1, an amount that is less than that produced by the eNOS found in alveolar type II or endothelial cells. Alveolar macrophage .NO formation is increased in the presence of extracellular L-arginine, incubation medium containing magnesium and no calcium, a calcium ionophore (A-23187), or methacholine. .NO production is inhibited by NG-nitro-L-arginine methyl ester (L-NAME) but not by NG-nitro-L-arginine, L-N5-(1-iminomethyl)ornithine hydrochloride, or aminoguanidine. Incubation with ATP, ADP, or histamine also inhibits .NO formation. Some of these properties are similar to and some are different from properties of eNOS in other cell types. Cellular .NO levels do not appear to be related to ATP or lactate content. Alveolar macrophage production of .NO can be increased approximately threefold in the presence of lung surfactant or its major component, dipalmitoyl phosphatidylcholine (DPPC). The DPPC-induced increase in .NO formation is time and concentration dependent, can be completely inhibited by L-NAME, and does not appear to be related to the degradation of DPPC by alveolar macrophages. These results demonstrate that unstimulated alveolar macrophages produce .NO via an eNOS and that lung surfactant increases .NO formation. This latter effect may be important in maintaining an anti-inflammatory state in vivo.Results from previous studies suggest that alveolar macrophages must be exposed to inflammatory stimuli to produce nitric oxide (⋅ NO). In this study, we report that naive unstimulated rat alveolar macrophages do produce ⋅ NO and attempt to characterize this process. Western blot analysis demonstrates that the enzyme responsible is an endothelial nitric oxide synthase (eNOS). No brain or inducible NOS can be detected. The rate of ⋅ NO production is ∼0.07 nmol ⋅ 106cells-1 ⋅ h-1, an amount that is less than that produced by the eNOS found in alveolar type II or endothelial cells. Alveolar macrophage ⋅ NO formation is increased in the presence of extracellularl-arginine, incubation medium containing magnesium and no calcium, a calcium ionophore (A-23187), or methacholine. ⋅ NO production is inhibited by N G-nitro-l-arginine methyl ester (l-NAME) but not by N G-nitro-l-arginine,l- N 5-(1-iminomethyl)ornithine hydrochloride, or aminoguanidine. Incubation with ATP, ADP, or histamine also inhibits ⋅ NO formation. Some of these properties are similar to and some are different from properties of eNOS in other cell types. Cellular ⋅ NO levels do not appear to be related to ATP or lactate content. Alveolar macrophage production of ⋅ NO can be increased approximately threefold in the presence of lung surfactant or its major component, dipalmitoyl phosphatidylcholine (DPPC). The DPPC-induced increase in ⋅ NO formation is time and concentration dependent, can be completely inhibited by l-NAME, and does not appear to be related to the degradation of DPPC by alveolar macrophages. These results demonstrate that unstimulated alveolar macrophages produce ⋅ NO via an eNOS and that lung surfactant increases ⋅ NO formation. This latter effect may be important in maintaining an anti-inflammatory state in vivo.


Journal of Nanobiotechnology | 2009

Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway

Jinshun Zhao; Linda Bowman; Xingdong Zhang; Xianglin Shi; Bing-Hua Jiang; Vincent Castranova; Min Ding

BackgroundCarcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles.ResultsUsing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95), Fas-associated protein with death domain (FADD), caspase-8, death receptor 3 (DR3) and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP) western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC) in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF) was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome c was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome c release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B) and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment.ConclusionIn this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death induced by metallic nickel particles in JB6 cells is through a caspase-8/AIF mediated cytochrome c-independent pathway. Lamin A and beta-actin are involved in the process of apoptosis. Activation of Akt and Bcl-2 may play an important role in preventing cytochrome c release from mitochondria to the cytoplasm and may also be important in the carcinogenicity of metallic nickel particles. In addition, the results may be useful as an important reference when comparing the toxicities of different nickel compounds.


Toxicology and Applied Pharmacology | 2009

Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells

Min Ding; Elena R. Kisin; Jinshun Zhao; Linda Bowman; Yongju Lu; Bing-Hua Jiang; Steve Leonard; Val Vallyathan; Vincent Castranova; Ashley R. Murray; Bengt Fadeel; Anna A. Shvedova

Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-kappaB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P(+)). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P(+) cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-kappaB more efficiently in JB6(+/+) cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6(+/+) cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.


Applied Occupational and Environmental Hygiene | 1996

Enhanced Pulmonary Response to the Inhalation of Freshly Fractured Silica as Compared with Aged Dust Exposure

Vincent Castranova; William H. Pailes; Nar S. Dalai; Philip R. Miles; Linda Bowman; Val Vallyathan; Donna Pack; Kenneth C. Weber; Ann F. Hubbs; Diane Schwegler-Berry; Jean Xiang; Richard D. Dey; Jack Blackford; Jane Y. C. Ma; Mark Barger; Dale A. Shoemaker; Jack R. Pretty; Dawn Ramsey; Jeff McLaurin; Amir Khan; Paul A. Baron; Charles P. Childress; Lloyd E. Stettler; Teass Aw

Abstract We have reported previously that grinding crystalline silica generates radicals on its cleavage planes and that this fresh dust is more cytotoxic in vitro than aged silica. The objective of the present study was to determine if freshly fractured silica was also more toxic and inflammatory in vivo than aged silica of the same composition and particle size. Fresh α-quartz was generated using a jet mill, while aged dust was milled and then stored for 2 months before use. Analysis of surface radicals by electron spin resonance spectroscopy verified the enhanced surface activity of this fresh silica compared with aged dust. Male Fischer 344 rats were exposed to fresh or aged α-quartz by inhalation (20 mg/m3, 5 hours per day, 5 days per week for 2 weeks) and pulmonary responses were determined 1 to 3 days after exposure. Exposure to aged silica resulted in an increase in total cells, red blood cells, lymphocytes, and granulocytes harvested by bronchoalveolar lavage, and in elevated acellular lavage pro...


Journal of Toxicology and Environmental Health | 2002

Role of mitogen-activated protein kinase activation in the production of inflammatory mediators: differences between primary rat alveolar macrophages and macrophage cell lines.

K. Murali Krishna Rao; Terence Meighan; Linda Bowman

Stimulation of macrophages has been shown to activate all three families of mitogen activated protein kinases (MAPKs). However, variable results are reported in the literature with respect to the particular kinases activated with any given stimulus. In this study, the role of activation of MAPKs was examined in the production of inflammatory mediators by measuring the phosphorylation of the kinases and their ability to phosphorylate specific substrates in rat primary alveolar macrophages, a rat alveolar macrophage cell line (NR8383), and two mouse monocytic cell lines (RAW 264.7 and J774A.1). In the three cell lines examined, all three families of MAPKs were activated upon stimulation with either lipopolysaccharide (LPS) or LPS plus interferon- n ; in contrast, only ERK1/2 was activated in primary rat alveolar macrophages upon stimulation with LPS. Inhibition of ERK1/2 activation by the MEK inhibitor PD98059 abrogated nitric oxide and tumor necrosis factor- f (TNF- f ) production in primary rat alveolar macrophages, but the p38 inhibitor SB203580 had no effect on the production of these two inflammatory mediators. These observations indicate that MAPK activation is cell specific and explain some of the conflicting results reported in the literature. These studies emphasize the need to exercise caution in extrapolating data from cell lines to primary cells.

Collaboration


Dive into the Linda Bowman's collaboration.

Top Co-Authors

Avatar

Min Ding

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongju Lu

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip R. Miles

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Rentian Feng

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiow Y. Wang

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Val Vallyathan

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Bing-Hua Jiang

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge