Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Buonocore is active.

Publication


Featured researches published by Linda Buonocore.


Cell | 2001

An Effective AIDS Vaccine Based on Live Attenuated Vesicular Stomatitis Virus Recombinants

Nina F. Rose; Preston A. Marx; Amara Luckay; Douglas F. Nixon; Walter J. Moretto; Sean M. Donahoe; David C. Montefiori; Anjeanette Roberts; Linda Buonocore; John K. Rose

We developed an AIDS vaccine based on attenuated VSV vectors expressing env and gag genes and tested it in rhesus monkeys. Boosting was accomplished using vectors with glycoproteins from different VSV serotypes. Animals were challenged with a pathogenic AIDS virus (SHIV89.6P). Control monkeys showed a severe loss of CD4+ T cells and high viral loads, and 7/8 progressed to AIDS with an average time of 148 days. All seven vaccinees were initially infected with SHIV89.6P but have remained healthy for up to 14 months after challenge with low or undetectable viral loads. Protection from AIDS was highly significant (p = 0.001). VSV vectors are promising candidates for human AIDS vaccine trials because they propagate to high titers and can be delivered without injection.


Cell | 1997

Construction of a Novel Virus That Targets HIV-1-Infected Cells and Controls HIV-1 Infection

Matthias J. Schnell; J. Erik Johnson; Linda Buonocore; John K. Rose

We describe a recombinant vesicular stomatitis virus lacking its glycoprotein gene and expressing instead the HIV-1 receptor CD4 and a coreceptor, CXCR4. This virus was unable to infect normal cells but did infect, propagate on, and kill cells that were first infected with HIV-1 and therefore had the HIV membrane fusion protein on their surface. Killing of HIV-1-infected cells controlled HIV infection in a T cell line and reduced titers of infectious HIV-1 in the culture by as much as 10(4)-fold. Such a targeted virus could have therapeutic value in reducing HIV viral load. Our results also demonstrate a general strategy of targeting one virus to the envelope protein of another virus to control infection.


The EMBO Journal | 1998

Requirement for a non‐specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus

Matthias J. Schnell; Linda Buonocore; Eli Boritz; Hara P. Ghosh; Robert Chernish; John K. Rose

The cytoplasmic domains of viral glycoproteins are often involved in specific interactions with internal viral components. These interactions can concentrate glycoproteins at virus budding sites and drive efficient virus budding, or can determine virion morphology. To investigate the role of the vesicular stomatitis virus (VSV) glycoprotein (G) cytoplasmic and transmembrane domains in budding, we recovered recombinant VSVs expressing chimeric G proteins with the transmembrane and cytoplasmic domains derived from the human CD4 protein. These unrelated foreign sequences were capable of supporting efficient VSV budding. Further analysis of G protein cytoplasmic domain deletion mutants showed that a cytoplasmic domain of only 1 amino acid did not drive efficient budding, whereas 9 amino acids did. Additional studies in agreement with the CD4‐chimera experiments indicated the requirement for a short cytoplasmic domain on VSV G without the requirement for a specific sequence in that domain. We propose a model for VSV budding in which a relatively non‐specific interaction of a cytoplasmic domain with a pocket or groove in the viral nucleocapsid or matrix proteins generates a glycoprotein array that promotes viral budding.


Journal of Virology | 2000

Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1.

Nina F. Rose; Anjeanette Roberts; Linda Buonocore; John K. Rose

ABSTRACT Live recombinant vesicular stomatitis viruses (VSVs) expressing foreign antigens are highly effective vaccine vectors. However, these vectors induce high-titer neutralizing antibody directed at the single VSV glycoprotein (G), and this antibody alone can prevent reinfection and boosting with the same vector. To determine if efficient boosting could be achieved by changing the G protein of the vector, we have developed two new recombinant VSV vectors based on the VSV Indiana serotype but with the G protein gene replaced with G genes from two other VSV serotypes, New Jersey and Chandipura. These G protein exchange vectors grew to titers equivalent to wild-type VSV and induced similar neutralizing titers to themselves but no cross-neutralizing antibodies to the other two serotypes. The effectiveness of these recombinant VSV vectors was illustrated in experiments in which sequential boosting of mice with the three vectors, all encoding the same primary human immunodeficiency virus (HIV) envelope protein, gave a fourfold increase in antibody titer to an oligomeric HIV envelope compared with the response in animals receiving the same vector three times. In addition, only the animals boosted with the exchange vectors produced antibodies neutralizing the autologous HIV primary isolate. These VSV envelope exchange vectors have potential as vaccines in immunizations when boosting of immune responses may be essential.


Journal of Virology | 2000

Successful Vaccine-Induced Seroconversion by Single-Dose Immunization in the Presence of Measles Virus-Specific Maternal Antibodies

Bernd Schlereth; John K. Rose; Linda Buonocore; Volker ter Meulen; Stefan Niewiesk

ABSTRACT In humans, maternal antibodies inhibit successful immunization against measles, because they interfere with vaccine-induced seroconversion. We have investigated this problem using the cotton rat model (Sigmodon hispidus). As in humans, passively transferred antibodies inhibit the induction of measles virus (MV)-neutralizing antibodies and protection after immunization with MV. In contrast, a recombinant vesicular stomatitis virus (VSV) expressing the MV hemagglutinin (VSV-H) induces high titers of neutralizing antibodies to MV in the presence of MV-specific antibodies. The induction of neutralizing antibodies increased with increasing virus dose, and all doses gave good protection from subsequent challenge with MV. Induction of antibodies by VSV-H was observed in the presence of passively transferred human or cotton rat antibodies, which were used as the models of maternal antibodies. Because MV hemagglutinin is not a functional part of the VSV-H envelope, MV-specific antibodies only slightly inhibit VSV-H replication in vitro. This dissociation of function and antigenicity is probably key to the induction of a neutralizing antibody in the presence of a maternal antibody.


Journal of Virology | 2001

Replication-Competent or Attenuated, Nonpropagating Vesicular Stomatitis Viruses Expressing Respiratory Syncytial Virus (RSV) Antigens Protect Mice against RSV Challenge

Jeffrey S. Kahn; Anjeanette Roberts; Carla Weibel; Linda Buonocore; John K. Rose

ABSTRACT Foreign glycoproteins expressed in recombinant vesicular stomatitis virus (VSV) can elicit specific and protective immunity in the mouse model. We have previously demonstrated the expression of respiratory syncytial virus (RSV) G (attachment) and F (fusion) glycoprotein genes in recombinant VSV. In this study, we demonstrate the expression of RSV F and G glycoproteins in attenuated, nonpropagating VSVs which lack the VSV G gene (VSVΔG) and the incorporation of these RSV proteins into recombinant virions. We also show that intranasal vaccination of mice with nondefective VSV recombinants expressing RSV G (VSV-RSV G) or RSV F (VSV-RSV F) elicited RSV-specific antibodies in serum (by enzyme-linked immunosorbent assay [ELISA]) as well as neutralizing antibodies to RSV and afford complete protection against RSV challenge. In contrast, VSVΔG-RSV F induced detectable serum antibodies to RSV by ELISA, but no detectable neutralizing antibodies, yet it still protected from RSV challenge. VSVΔG-RSV G failed to induce any detectable serum (by ELISA) or neutralizing antibodies and failed to protect from RSV challenge. The attenuated, nonpropagating VSVΔG-RSV F is a particularly attractive candidate for a live attenuated recombinant RSV vaccine.


Journal of Virology | 2002

Role of N-Linked Glycans in a Human Immunodeficiency Virus Envelope Glycoprotein: Effects on Protein Function and the Neutralizing Antibody Response

Miriam I. Quiñones-Kochs; Linda Buonocore; John K. Rose

ABSTRACT The envelope (Env) glycoprotein of human immunodeficiency virus (HIV) contains 24 N-glycosylation sites covering much of the protein surface. It has been proposed that one role of these carbohydrates is to form a shield that protects the virus from immune recognition. Strong evidence for such a role for glycosylation has been reported for simian immunodeficiency virus (SIV) mutants lacking glycans in the V1 region of Env (J. N. Reitter, R. E. Means, and R. C. Desrosiers, Nat. Med. 4:679-684, 1998). Here we used recombinant vesicular stomatitis viruses (VSVs) expressing HIV Env glycosylation mutants to determine if removal of carbohydrates in the V1 and V2 domains affected protein function and the generation of neutralizing antibodies in mice. Mutations that eliminated one to six of the sites for N-linked glycosylation in the V1 and V2 loops were introduced into a gene encoding the HIV type 1 primary isolate 89.6 envelope glycoprotein with its cytoplasmic domain replaced by that of the VSV G glycoprotein. The membrane fusion activities of the mutant proteins were studied in a syncytium induction assay. The transport and processing of the mutant proteins were studied with recombinant VSVs expressing mutant Env G proteins. We found that HIV Env V1 and V2 glycosylation mutants were no better than wild-type envelope at inducing antibodies neutralizing wild-type Env, although an Env mutant lacking glycans appeared somewhat more sensitive to neutralization by antibodies raised to mutant or wild-type Env. These results indicate significant differences between SIV and HIV with regard to the roles of glycans in the V1 and V2 domains.


Journal of Virology | 2002

Characterization of Vesicular Stomatitis Virus Recombinants That Express and Incorporate High Levels of Hepatitis C Virus Glycoproteins

Linda Buonocore; Keril J. Blight; Charles M. Rice; John K. Rose

ABSTRACT We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein was deleted and replaced by one or both of the E1G and E2G genes, together with a green fluorescent protein gene. These ΔG viruses incorporated E1G and E2G proteins at levels approximately equivalent to the normal level of VSV G itself, or about 1,200 molecules of each protein per virion. Given the potency of VSV recombinants as vaccines in other studies, this high-level expression and incorporation of HCV proteins into virions could be very important for development of an HCV vaccine. Despite the presence of E1G and E2G proteins at high levels in the virions, these virions did not infect cell lines that have been reported to support at least a low level of HCV infection and replication.


Journal of Virology | 2005

A vesicular stomatitis virus recombinant expressing granulocyte-macrophage colony-stimulating factor induces enhanced T-cell responses and is highly attenuated for replication in animals.

Elizabeth Ramsburg; Jean Publicover; Linda Buonocore; Amanda Poholek; Michael D. Robek; Amy Palin; John K. Rose

ABSTRACT Live attenuated vectors based on recombinant vesicular stomatitis viruses (rVSVs) expressing foreign antigens are highly effective vaccines in animal models. In this study, we report that an rVSV (VSV-GMCSF1) expressing high levels of murine granulocyte-macrophage colony-stimulating factor (GM-CSF) from the first position in the viral genome is highly attenuated in terms of viral dissemination and pathogenesis after intranasal delivery to mice. However, this highly attenuated virus generated antibody and T-cell responses equivalent to those induced by a control virus expressing enhanced green fluorescent protein (EGFP) from the first position (VSV-EGFP1). The better containment and clearance of VSV-GMCSF1 may be due to enhanced recruitment of macrophages to the site of infection but is not explained by a greater induction of interferons. The primary CD8 T-cell and neutralizing antibody responses to VSV-GMCSF1 were equivalent to those generated by VSV-EGFP1, while the CD8 T-cell memory and recall responses to the vector were enhanced in mice infected with VSV-GMCSF1. It is likely that the GM-CSF produced by immunization with this virus results in an enhanced recruitment of antigen-presenting cells, leading to better acute and long-term T-cell responses. This recruitment appears to cancel out any negative effect of viral attenuation on immunogenicity.


Journal of Virology | 2002

Robust Recall and Long-Term Memory T-Cell Responses Induced by Prime-Boost Regimens with Heterologous Live Viral Vectors Expressing Human Immunodeficiency Virus Type 1 Gag and Env Proteins

Karl Haglund; Ingrid Leiner; Kristen M. Kerksiek; Linda Buonocore; Eric G. Pamer; John K. Rose

ABSTRACT We investigated long-term memory and recall cellular immune responses to human immunodeficiency virus type 1 (HIV-1) Env and Gag proteins elicited by recombinant vesicular stomatitis viruses (VSVs) expressing Env and Gag. More than 7 months after a single vaccination with VSV-Env, ∼6% of CD8+ splenocytes stained with major histocompatibility complex class I tetramers containing the Env p18-I10 immunodominant peptide and showed a memory phenotype (CD44Hi). The level of tetramer-positive cells in memory was about 14% of the peak primary response. Recall responses elicited in these mice 5 days after boosting with a heterologous recombinant vaccinia virus expressing HIV-1 Env showed that 40 to 45% of CD8+ splenocytes were tetramer positive and activated (CD62LLo), and these cells produced gamma interferon after stimulation with Env peptide, indicating that they were functional. Five months after the boost, the long-term memory cell population (tetramer positive, CD44Hi) constituted 30% of the CD8+ splenocytes. Recall responses to HIV-1 Gag were examined in mice primed with VSV recombinants expressing HIV-1 Gag protein and boosted with a vaccinia virus recombinant expressing Gag. Using this protocol, we found that ∼40% of CD8+ splenocytes were activated (CD62LLo) and specific for a Gag immunodominant peptide (tetramer positive). The high-level Gag recall response elicited by the vaccinia virus-Gag was greater than that obtained by boosting with a VSV-Gag vector with a different VSV glycoprotein. The corresponding levels of CD44Hi memory cells were also higher long after boosting with vaccinia virus-Gag than after boosting with a glycoprotein exchange VSV-Gag. Our results show that VSV vectors elicit high-level memory CTL responses and that these can be amplified as much as six- to sevenfold using a heterologous boosting vector.

Collaboration


Dive into the Linda Buonocore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anjeanette Roberts

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amorsolo L. Suguitan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge