Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda E. Graham is active.

Publication


Featured researches published by Linda E. Graham.


Science | 1989

Lignin-Like Compounds and Sporopollenin Coleochaete, an Algal Model for Land Plant Ancestry

Charles F. Delwiche; Linda E. Graham; Norman Thomson

Unusual cell wall structure and resistance to microbial degradation led to an investigation of resistant biopolymers in Coleochaete (Chlorophyta, class Charophyceae), a green alga on the evolutionary lineage that led to land plants. In Coleochaete that are undergoing sexual reproduction, vegetative cell walls contain material similar to lignin, a substance generally thought absent from green algae, and the zygote wall includes sporopollenin. Knowledge of chemically resistant compounds in Coleochaete may facilitate interpretation of the fossil record. Placental transfer cells in Coleochaete orbicularis and in the hornwort Anthoceros survive acetolysis and contain lignin-like compounds, implying a close relation between these taxa.


American Journal of Botany | 1997

Comparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmata

Martha E. Cook; Linda E. Graham; C. E. J. Botha; Colleen A. Lavin

We have used transmission electron microscopy to examine plasmodesmata of the charophycean green alga Chara zeylanica, and of the putatively early divergent bryophytes Monoclea gottschei (liverwort), Notothylas orbicularis (hornwort), and Sphagnum fimbriatum (moss), in an attempt to learn when seed plant plasmodesmata may have originated. The three bryophytes examined have desmotubules. In addition, Monoclea was found to have branched plasmodesmata, and plasmodesmata of Sphagnum displayed densely staining regions around the neck region, as well as ring-like wall specializations. In Chara, longitudinal sections revealed endoplasmic reticulum (ER) that sometimes appeared to be associated with plasmodesmata, but this was rare, despite abundant ER at the cell periphery. Across all three fixation methods, cross-sectional views showed an internal central structure, which in some cases appeared to be connected to the plasma membrane via spoke-like structures. Plasmodesmata were present even in the incompletely formed reticulum of forming cell plates, from which we conclude that primary plasmodesmata are formed at cytokinesis in Chara zeylanica. Based on these results it appears that plasmodesmata of Chara may be less specialized than those of seed plants, and that complex plasmodesmata probably evolved in the ancestor of land plants before extant lineages of bryophytes diverged.


Journal of Plant Research | 1996

Green algae to land plants: An evolutionary transition

Linda E. Graham

Studies focused upon the evolutionary transition from ancestral green algae to the earliest land plants are important from a range of ecological, molecular and evolutionary perspectives. A substantial suite of ultrastructural, biochemical and molecular data supports the concept that land plants (embryophytes) are monophyletically derived from an ancestral charophycean alga. However, the details of phylogenetic branching patterns linking extant charophytes and seedless embryophytes are currently unclear. Moreover, the fossil record has so far been mute regarding the algae-land plant transition. Nevertheless, an accurate reflection of major evolutionary events in the history of the earliest land plants can be obtained by comparative paleontological-neontological studies, and comparative molecular, cellular and developmental investigations of extant charophytes and bryophytes. This review focuses upon research progress toward understanding three clade-specific adaptations that were important in the successful colonization of land by plants: the histogenetic apical meristem, the matrotrophic embryo, and decay-resistant cell wall polymers.


PLOS ONE | 2008

EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata

Eunsoo Kim; Linda E. Graham

BACKGROUND Classification of eukaryotes provides a fundamental phylogenetic framework for ecological, medical, and industrial research. In recent years eukaryotes have been classified into six major supergroups: Amoebozoa, Archaeplastida, Chromalveolata, Excavata, Opisthokonta, and Rhizaria. According to this supergroup classification, Archaeplastida and Chromalveolata each arose from a single plastid-generating endosymbiotic event involving a cyanobacterium (Archaeplastida) or red alga (Chromalveolata). Although the plastids within members of the Archaeplastida and Chromalveolata share some features, no nucleocytoplasmic synapomorphies supporting these supergroups are currently known. METHODOLOGY/PRINCIPAL FINDINGS This study was designed to test the validity of the Archaeplastida and Chromalveolata through the analysis of nucleus-encoded eukaryotic translation elongation factor 2 (EEF2) and cytosolic heat-shock protein of 70 kDa (HSP70) sequences generated from the glaucophyte Cyanophora paradoxa, the cryptophytes Goniomonas truncata and Guillardia theta, the katablepharid Leucocryptos marina, the rhizarian Thaumatomonas sp. and the green alga Mesostigma viride. The HSP70 phylogeny was largely unresolved except for certain well-established groups. In contrast, EEF2 phylogeny recovered many well-established eukaryotic groups and, most interestingly, revealed a well-supported clade composed of cryptophytes, katablepharids, haptophytes, rhodophytes, and Viridiplantae (green algae and land plants). This clade is further supported by the presence of a two amino acid signature within EEF2, which appears to have arisen from amino acid replacement before the common origin of these eukaryotic groups. CONCLUSIONS/SIGNIFICANCE Our EEF2 analysis strongly refutes the monophyly of the Archaeplastida and the Chromalveolata, adding to a growing body of evidence that limits the utility of these supergroups. In view of EEF2 phylogeny and other morphological evidence, we discuss the possibility of an alternative eukaryotic supergroup.


American Journal of Botany | 1983

THE OCCURRENCE AND PHYLOGENETIC SIGNIFICANCE OF PUTATIVE PLACENTAL TRANSFER CELLS IN THE GREEN ALGA COLEOCHAETE

Linda E. Graham; Lee W. Wilcox

Following fertilization, zygotes of the green alga Coleochaete orbicularis, which are retained on the haploid thallus, first enlarge, then become covered with a layer of vegetative cells. Light microscopy and high-voltage electron microscopy revealed the presence of localized wall ingrowths in vegetative cells adjacent to zygotes. These covering cells resemble the gametophytic placental transfer cells of embryophytes in their morphology, location, and time of development. If Coleochaete cells with wall protuberances function as do placental transfer cells of embryophytes, their presence is evidence that photosynthates may be transported between haploid thallus cells and zygotes. Thus, a nutritional relationship between different phases of the life cycle, similar to that which occurs in embryophytes, may also have evolved in green algae. This first report of putative placental transfer cells in a green alga supports Bowers (1908) ideas concerning the origin of land plant sporophytes and alternation of generations. The presence or absence of cells with wall ingrowths in several species of Coleochaete was correlated with estimates of zygote-plant area ratios.


Microbial Ecology | 2004

Genetically Distinct Populations of the Dinoflagellate Peridinium limbatum in Neighboring Northern Wisconsin Lakes

E. Kim; Lee W. Wilcox; Linda E. Graham; James M. Graham

The extent to which free-living microorganisms exist in geographically isolated, genetically distinct populations is a subject of continuing debate. Some authorities contend that many microorganisms have cosmopolitan distributions, while others provide evidence that more limited geographical distribution of genetically distinct populations can occur. We report the occurrence of two morphologically similar, but genetically distinct, populations of the microbial eukaryote Peridinium limbatum (Stokes) Lemmermann from neighboring Northern Wisconsin freshwater bodies. Five strains of P. limbatum were cultured by single-cell isolation from both Crystal Lake and Crystal Bog (Oneida Co., WI). Genetic variation between the two populations encompassed 8.9% (mean of 35.4 of 397 nucleotides) of the nuclear ribosomal DNA internal transcribed spacer (ITS1 and ITS2) region. In contrast, 0.5% (mean of 2.25 of 397 nucleotides) variation was observed within the Crystal Lake population and 0.3% (mean of 1.21 of 397 nucleotides), within the Crystal Bog population. This difference between the two populations was highly statistically significant (p-value << 0.001). The extent of genetic variation between the two P. limbatum populations was greater than that reported in the literature for some morphologically distinguishable microalgal species, suggesting the occurrence of cryptic sister species. On the other hand, hybrid sequences obtained from one of the Crystal Lake strains suggest that the two populations may still be members of a single sexually compatible biological species. Our data suggest that the two neighboring P. limbatum populations may be diverging genetically under conditions of limited gene flow, suggesting a mechanism for the origin of geographically isolated, genetically distinct populations of microbial eukaryotes.


FEMS Microbiology Ecology | 2015

Invasive dreissenid mussels and benthic algae in Lake Michigan: characterizing effects on sediment bacterial communities

Philip O. Lee; Sandra L. McLellan; Linda E. Graham; Erica B. Young

Dreissenid mussels have invaded the Laurentian Great Lakes causing dramatic changes to benthic-pelagic interactions. Despite research on food web impacts, there is limited data on mussel effects on benthic bacterial communities. This study examined effects of dreissenid mussels and benthic algae on sediment bacterial community composition and diversity. Triplicate experimental sediment plus lake water microcosms were used and either mussels, benthic algae or both were added. Changes in water nutrient chemistry and sediment bacterial communities were monitored using 16S rRNA amplicon sequencing, over 21 days. When mussels were present, nitrate and soluble reactive P increased significantly as the dominant N and P forms. Bacterial diversity increased in all microcosms, although bacterial community composition was distinct between treatment. Higher nitrate in mussel microcosms was accompanied by increases in nitrifying taxa (Nitrospira, Nitrosomonas), which are important in oxidizing mussel-excreted ammonium. Microcosms with algal additions showed increases in bacterial taxa capable of degrading algal cellulose, and Pelagibacter (SAR11) disappeared from all but control microcosms. This study suggests that bacterial communities in lake sediments respond to mussels and algae. Functional analysis of bacterial communities provides insights into changes in microbially mediated benthic nutrient transformations associated with invasive dreissenid mussels and benthic algae in lake ecosystems.


Journal of Phycology | 1982

AMPHIDINIUM CRYOPHILUM SP. NOV. (DINOPHYCEAE) A NEW FRESHWATER DINOFLAGELLATE. II. ULTRASTRUCTURE1

Lee W. Wilcox; Gary J. Wedemayer; Linda E. Graham

The dinoflagellate Amphidinium cryophilum sp. nov. is one of the few gymnodinians to be studied at the ultrastructural level. It resembles other dinoflagellates in the structure of the nucleus, trichocysts, storage materials, flagella, mitochondria, and microbodies. Other features of A. cryophilum less commonly observed in related organisms include a network of small interconnected vesicles, a system of large, peripheral vacuoles, chloroplasts bound by two rather than three membranes, an accumulation body, thylakoid‐associated plastoglobuli, a vesiculated nuclear envelope, a complex tubular pusule, striated flagellar collars, collared pits, and a peduncle. The occurrence of a peduncle, a structure implicated in phagotrophy, in this autotrophic organism is noteworthy. The ultrastructure of the peduncle of A. cryophilum differs significantly from that reported in another dinoflagellate.


Journal of Phycology | 2013

The Genus Cladophora Kützing (Ulvophyceae) as a Globally Distributed Ecological Engineer

Shahrizim Zulkifly; James M. Graham; Erica B. Young; Robert J. Mayer; Michael J. Piotrowski; Izak Smith; Linda E. Graham

The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri‐phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora‐dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora‐dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well‐known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer.


Microbial Ecology | 1998

Bacterial Abundance and Activity across Sites within Two Northern Wisconsin Sphagnum Bogs

M.M. Fisher; James M. Graham; Linda E. Graham

A bstractBacterial abundance, temperature, pH, and dissolved organic carbon (DOC) concentration were compared across surface sites within and between two northern Wisconsin Sphagnum peatlands over the summer seasons in 1995 and 1996. Sites of interest were the Sphagnum mat surface, the water-filled moat (lagg) at the bog margin, and the bog lake littoral zone. Significant differences in both bacterial populations and water chemistry were observed between sites. pH was highest in the lake and lowest in the mat at both bogs; the opposite was true for DOC. Large populations of bacteria were present in surface interstitial water from the mat; abundance in this site was consistently higher than in the moat or lake. Bacterial abundance also increased across sites of increasing DOC concentration and declining pH. Bacterial activities (rates of [3H]leucine incorporation) and growth in dilution cultures (with grazers removed) were also assessed in lake, moat, and mat sites. Results using these measures generally supported the trends observed in abundance, although high rates of [3H]leucine incorporation were recorded in the moat at one of the bogs. Our results indicate that bacterial populations in Sphagnum peatlands are not adversely affected by acidity, and that DOC may be more important than pH in determining bacterial abundance in these environments.

Collaboration


Dive into the Linda E. Graham's collaboration.

Top Co-Authors

Avatar

James M. Graham

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Martha E. Cook

Illinois State University

View shared research outputs
Top Co-Authors

Avatar

Lee W. Wilcox

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jennifer J. Knack

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Eunsoo Kim

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Michael J. Piotrowski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Marie T. Trest

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Wilson A. Taylor

University of Wisconsin–Eau Claire

View shared research outputs
Top Co-Authors

Avatar

Anchittha Satjarak

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

James A. Kranzfelder

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge