Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Ellis is active.

Publication


Featured researches published by Linda Ellis.


Hormones and Behavior | 2010

Prenatal alcohol exposure reduces the proportion of newly produced neurons and glia in the dentate gyrus of the hippocampus in female rats

Kristina A. Uban; Joanna H. Sliwowska; Stephanie E. Lieblich; Linda Ellis; Wayne K. Yu; Joanne Weinberg; Liisa A.M. Galea

Prenatal alcohol exposure (PAE) alters adult neurogenesis and the neurogenic response to stress in male rats. As the effects of stress on neurogenesis are sexually dimorphic, the present study investigated the effects of PAE on adult hippocampal neurogenesis under both nonstressed and stressed conditions in female rats. Pregnant females were assigned to one of three prenatal treatments: (1) alcohol (PAE)-liquid alcohol (ethanol) diet ad libitum (36% ethanol-derived calories); (2) pair-fed-isocaloric liquid diet, with maltose-dextrin substituted for ethanol, in the amount consumed by a PAE partner (g/kg body wt/day of gestation); and (3) control-lab chow ad libitum. Female offspring were assigned to either nonstressed (undisturbed) or stressed (repeated restraint stress for 9 days) conditions. On day 10, all rats were injected with bromodeoxyuridine (BrdU) and perfused either 24 hours (cell proliferation) or 3 weeks (cell survival) later. We found that PAE did not significantly alter cell proliferation or survival, whereas females from the pair-fed condition exhibited elevated levels of cell survival compared to control females. Importantly, however, the proportion of both new neurons and new glial cells in the hippocampal dentate gyrus was reduced in PAE compared to control females. Exposure to stress did not alter neurogenesis in any of the prenatal treatment groups. In summary, compared to females from the control condition, prenatal dietary restriction enhanced the survival of new neurons, whereas PAE altered the differentiation of newly produced cells in the adult dentate gyrus. Alterations in hippocampal neurogenesis following PAE may contribute to learning and memory deficits seen in individuals with fetal alcohol spectrum disorders.


Journal of Neuroendocrinology | 2006

Prenatal ethanol exposure alters the effects of gonadectomy on hypothalamic-pituitary-adrenal activity in male rats

Ni Lan; F. Yamashita; A. G. Halpert; Linda Ellis; Wayne K. Yu; Victor Viau; Joanne Weinberg

Prenatal ethanol exposure has marked effects on development of the hypothalamic‐pituitary‐adrenal (HPA) and ‐gonadal (HPG) axes. In adulthood, ethanol‐treated rats show altered gonadal hormone responses and reproductive function, and increased HPA responsiveness to stressors. Importantly, prenatal ethanol differentially alters stress responsiveness in adult males and females, raising the possibility that the gonadal hormones play a role in mediating prenatal ethanol effects on HPA function. To examine a possible testicular influence on HPA activity in males, we compared the effects of gonadectomy on HPA stress responses of adult male offspring from ethanol, pair‐fed (PF) and ad libitum‐fed control dams. Intact ethanol‐treated rats showed increased adrenocorticotrophic hormone (ACTH) but blunted testosterone and luteinising hormone (LH) responses to restraint stress, and no stress‐induced elevation in arginine vasopressin (AVP) mRNA levels compared to those observed in PF and/or control rats. Gonadectomy: (i) significantly increased ACTH responses to stress in control but not ethanol‐treated and PF males; (ii) eliminated differences among groups in plasma ACTH and AVP mRNA levels; and (iii) altered LH and gonadotrophin‐releasing hormone responses in ethanol‐treated males. Taken together, these findings suggest that central regulation of both the HPA and HPG axes are altered by prenatal ethanol exposure, with normal testicular influences on HPA function markedly reduced in ethanol‐treated animals. A decreased sensitivity to inhibitory effects of androgens could contribute to the HPA hyperresponsiveness typically observed in ethanol‐treated males.


Psychoneuroendocrinology | 2013

Basal regulation of HPA and dopamine systems is altered differentially in males and females by prenatal alcohol exposure and chronic variable stress.

Kristina A. Uban; Wendy L. Comeau; Linda Ellis; Liisa A.M. Galea; Joanne Weinberg

Effects of prenatal alcohol exposure (PAE) on central nervous system function include an increased prevalence of mental health problems, including substance use disorders (SUD). The hypothalamic-pituitary-adrenal (HPA) and dopamine (DA) systems have overlapping neurocircuitries and are both implicated in SUD. PAE alters both HPA and dopaminergic activity and regulation, resulting in increased HPA tone and an overall reduction in tonic DA activity. However, effects of PAE on the interaction between HPA and DA systems have not been investigated. The present study examined PAE effects on basal regulation of central stress and DA systems in key brain regions where these systems intersect. Adult Sprague-Dawley male and female offspring from prenatal alcohol-exposed (PAE), pairfed (PF), and ad libitum-fed control (C) groups were subjected to chronic variable stress (CVS) or remained as a no stress (non-CVS) control group. Corticotropin releasing hormone (CRH) mRNA, as well as glucocorticoid and DA receptor (DA-R) expression were measured under basal conditions 24h following the end of CVS. We show, for the first time, that regulation of basal HPA and DA systems, and likely, HPA-DA interactions, are altered differentially in males and females by PAE and CVS. PAE augmented the typical attenuation in weight gain during CVS in males and caused increased weight loss in females. Increased basal corticosterone levels in control, but not PAE, females suggest that PAE alters the profile of basal hormone secretion throughout CVS. CVS downregulated basal CRH mRNA in the prefrontal cortex and throughout the bed nucleus of the stria terminalis (BNST) in PAE females but only in the posterior BNST of control females. PAE males and females exposed to CVS exhibited more widespread upregulation of basal mineralocorticoid receptor mRNA throughout the hippocampus, and an attenuated decrease in DA-R expression throughout the nucleus accumbens and striatum compared to CVS-exposed control males and females. Overall, these findings enhance our understanding of PAE effects on the cross-talk between HPA and DA systems, and provide insight into possible mechanisms underlying mental health problems that are related to stress and DA signaling, including SUD, which have a high prevalence among individuals with FASD.


Psychoneuroendocrinology | 1999

Chronic intermittent stress does not differentially alter brain corticosteroid receptor densities in rats prenatally exposed to ethanol.

C. Kwon Kim; Wayne Yu; Glenn Edin; Linda Ellis; Jill A. Osborn; Joanne Weinberg

Prenatal ethanol exposure produces hypothalamic-pituitary-adrenal (HPA) hyperresponsiveness to stressors. The present study tested the hypothesis that decreased corticosteroid receptor densities at HPA feedback sites may play a role in deficient feedback inhibition and the resultant HPA hyperresponsiveness that is observed following prenatal ethanol exposure. Brains of adult Sprague-Dawley rats from prenatal ethanol (E), pair-fed (PF) and ad libitum-fed control (C) treatment groups were examined for both mineralocorticoid receptor (MR; Type I) and glucocorticoid receptor (GR; Type II) densities using a cytosolic binding assay. Experiment 1 compared the effects of chronic intermittent stress (Stress Regimen I) and corticosterone (CORT) pellet implants on hippocampal corticosteroid receptor densities in control rats. Experiment 2 determined whether exposure to Stress Regimen I would differentially downregulate and whether adrenalectomy (ADX) would differentially upregulate hippocampal corticosteroid receptors in E compared with PF and C animals. Experiment 3 examined the effects of a modified chronic intermittent stress regimen (Stress Regimen II) on corticosteroid receptor densities at several HPA feedback sites (hippocampus, prefrontal cortex, hypothalamus, and anterior pituitary) in E compared with PF and C animals. CORT pellet implants significantly downregulated hippocampal GR and MR densities in control males and females. Exposure to Stress Regimen I produced downregulation of hippocampal GRs and MRs in males comparable with that produced with CORT pellet implants, and significant downregulation of hippocampal GRs in females across all prenatal treatment groups. This stress regimen also elevated basal plasma CORT levels without concurrent changes in plasma CBG levels, and increased relative adrenal weights in both males and females. In addition, upregulation of hippocampal GRs occurred at 7 days compared with 24 h following ADX in females that had previously been exposed to this stress regimen. Following exposure to Stress Regimen II, both the downregulation of hippocampal corticosteroid receptors and the increase in basal CORT levels in males and females appear to have been abolished by the changes in housing condition during the period of chronic stress. Importantly, prenatal ethanol exposure did not differentially alter GR or MR densities at any feedback site under non-stressed conditions. Exposure to Stress Regimen II, revealed subtle effects of prenatal treatments on hippocampal GRs however it is unlikely that these changes in corticosteroid receptor densities mediated the feedback inhibition deficits observed in E animals. Together, these data demonstrate that: (1) a relatively mild intermittent stress regimen can increase basal CORT levels and downregulate hippocampal corticosteroid receptor densities (2) a seemingly small change in housing conditions during stress appears to eliminate both receptor downregulation and increase in basal CORT levels and (3) decreased corticosteroid receptor densities at HPA feedback sites in the brain do not appear to underlie the HPA hyperresponsiveness observed in E animals.


Brain Behavior and Immunity | 2012

PRENATAL ALCOHOL EXPOSURE ALTERS THE COURSE AND SEVERITY OF ADJUVANT-INDUCED ARTHRITIS IN FEMALE RATS

Xingqi Zhang; Ni Lan; Paxton Bach; David W. Nordstokke; Wayne Yu; Linda Ellis; Gary G. Meadows; Joanne Weinberg

Prenatal alcohol exposure (PAE) has adverse effects on the development of numerous physiological systems, including the hypothalamic-pituitary-adrenal (HPA) axis and the immune system. HPA hyper-responsiveness and impairments in immune competence have been demonstrated. The present study investigated immune function in PAE females utilizing an adjuvant-induced arthritis (AA) model, widely used as a model of human rheumatoid arthritis. Given the effects of PAE on HPA and immune function, and the known interaction between HPA and immune systems in arthritis, we hypothesized that PAE females would have heightened autoimmune responses, resulting in increased severity of arthritis, compared to controls, and that altered HPA activity might play a role in the immune system changes observed. The data demonstrate, for the first time, an adverse effect of PAE on the course and severity of AA in adulthood, indicating an important long-term alteration in functional immune status. Although overall, across prenatal treatments, adjuvant-injected animals gained less weight, and exhibited decreased thymus and increased adrenal weights, and increased basal levels of corticosterone and adrenocorticotropin, PAE females had a more prolonged course of disease and greater severity of inflammation compared to controls. In addition, PAE females exhibited blunted lymphocyte proliferative responses to concanavalin A and a greater increase in basal ACTH levels compared to controls during the induction phase, before any clinical signs of disease were apparent. These data suggest that prenatal alcohol exposure has both direct and indirect effects on inflammatory processes, altering both immune and HPA function, and likely, the normal interactions between these systems.


Psychoneuroendocrinology | 2009

Role of testosterone in mediating prenatal ethanol effects on hypothalamic–pituitary–adrenal activity in male rats

Ni Lan; Kim G.C. Hellemans; Linda Ellis; Victor Viau; Joanne Weinberg

Prenatal ethanol (E) exposure programs the fetal hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes such that E rats show HPA hyperresponsiveness to stressors and altered HPG and reproductive function in adulthood. Importantly, prenatal ethanol may differentially alter stress responsiveness in adult male and female offspring compared to their control counterparts. To test the hypothesis that alterations in HPA activity in E males are mediated, at least in part, by ethanol-induced changes in the capacity of testosterone to regulate HPA activity, we explored dose-related effects of testosterone on HPA and HPG function in adult male offspring from prenatal E, pair-fed (PF) and ad libitum-fed control (C) dams. Our data suggest that E males show changes in both HPA and HPG regulation, as well as altered sensitivity to the inhibitory effects of testosterone. While gonadectomy (GDX) reduced weight gain in all animals, low testosterone replacement restored body weights in PF and C but not E males. Further, sensitivity of the thymus and adrenal to circulating testosterone was reduced in E rats. In addition, stress-induced corticosterone (CORT) levels were increased in PF and C but not E males following GDX, and while low dose testosterone replacement restored CORT levels for PF and C, high testosterone levels were needed to normalize CORT levels for E males. A negative correlation between pre-stress testosterone and post-stress CORT levels in C but not in E and PF males further supports the finding of reduced sensitivity to testosterone. Importantly, testosterone appeared to have reduced effects on central corticotrophin releasing hormone (CRH) pathways in E, but greater effects on central arginine vasopressin (AVP) pathways in E and/or PF compared to C males. Testosterone also had less of an inhibitory effect on stress-induced luteinizing hormone increases in E than in PF and C males following GDX. In addition, androgen receptor mRNA levels in the medial preoptic nucleus and the principal nucleus of posterior bed nucleus of the stria terminalis were lower in E and PF compared to C males under intact conditions. Together, these data support our previous work suggesting altered sensitivity to testosterone in E males. Furthermore, differential effects of testosterone on the complex balance between central CRH and central AVP pathways may play a role in the HPA alterations observed. That some findings were similar in E and PF males suggest that nutritional effects of diet may have played a role in mediating at least some of the changes seen in E animals.


Frontiers in Endocrinology | 2014

Neurocircuitry underlying stress and emotional regulation in animals prenatally exposed to alcohol and subjected to chronic mild stress in adulthood.

Charlis Raineki; Kim G.C. Hellemans; Tamara Bodnar; Katie M. Lavigne; Linda Ellis; Todd S. Woodward; Joanne Weinberg

Individuals exposed to alcohol during gestation show higher rates of psychopathologies. The hyperresponsivity to stress induced by prenatal alcohol exposure (PAE) may be related to this increased rate of psychopathologies, especially because this population is more likely to be exposed to stressful environments throughout life. However, alcohol-induced changes in the overlapping neurocircuitries that underlie stress and the expression of psychopathologies are not fully understood. Here, we performed a comprehensive analysis of the neural activity within central areas known to play key roles in both emotional and stress regulation. Adult male and female offspring from PAE, pair-fed, and ad libitum-fed control conditions were exposed to chronic mild stress (CMS). Following CMS, the neural activity (c-fos mRNA) of the amygdala, ventral hippocampal formation, medial prefrontal cortex (mPFC), and paraventricular nucleus of hypothalamus (PVN) was assessed in response to an acute stress (elevated plus maze). Our results demonstrate that, overall, PAE decreased neural activity within the amygdala and hippocampal formation in males and increased neural activity within the amygdala and mPFC in females. CMS reduced neural activity within the mPFC and PVN in PAE males, but reduced activity in all areas analyzed in control males. By contrast, CMS reduced neural activity in the mPFC in PAE females and had no effects in control females. Furthermore, the constrained principal component analysis revealed that these patterns of neural activity resulted in differential activation of the functional neural networks in males compared to females, indicating sexually dimorphic effects of PAE and CMS. Importantly, the altered networks of brain activation in PAE animals may underlie the hyperresponsivity to stress and increased psychopathologies observed among individuals prenatally exposed to alcohol.


Neuroscience | 2017

Prenatal alcohol exposure and prenatal stress differentially alter glucocorticoid signaling in the placenta and fetal brain

Ni Lan; M.P.Y. Chiu; Linda Ellis; Joanne Weinberg

Adverse intrauterine environments increase vulnerability to chronic diseases across the lifespan. The hypothalamic-pituitary-adrenal (HPA) axis, which integrates multiple neuronal signals and ultimately controls the response to stressors, may provide a final common pathway linking early adversity and adult diseases. Both prenatal alcohol exposure (PAE) and prenatal stress (PS) induce a hyperresponsive HPA phenotype in adulthood. As glucocorticoids are pivotal for the normal development of many fetal tissues including the brain, we used animal models of PAE and PS to investigate possible mechanisms underlying fetal programing of glucocorticoid signaling in the placenta and fetal brain at gestation day (GD) 21. We found that both PAE and PS dams had higher corticosterone (CORT) levels than control dams. However, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) enzyme levels were increased in PAE and unchanged in PS placentae, although there were no differences in 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. Moreover, only PAE fetuses showed decreased body weight and increased placental weight, and hence a lower fetal/placental weight ratio, a marker of placenta efficiency, compared to all other prenatal groups. Importantly, PAE and PS differentially altered corticosteroid receptor levels in placentae and brains. In the PS condition, maternal CORT was negatively correlated with both 11β-HSD1 and mineralocorticoid receptor (MR) protein levels in male and female placentae, whereas in the PAE condition, there were trends for a positive correlation between maternal CORT and 11β-HSD1, regardless of sex, and a negative correlation between maternal alcohol intake and MR in male placentae. In fetal brains, sexually dimorphic changes in MR and glucocorticoid receptor (GR) levels, and the MR/GR ratio seen in C fetuses were absent in PAE and PS fetuses. In addition, PS but not PAE female fetuses had higher MR and lower GR expression levels in certain limbic areas compared to C female fetuses. Thus the similar adult HPA hyperresponsive phenotype in PAE and PS animals likely occurs through differential effects on glucocorticoid signaling in the placenta and fetal brain.


Alcoholism: Clinical and Experimental Research | 2015

Exposure to Chronic Mild Stress Differentially Alters Corticotropin-Releasing Hormone and Arginine Vasopressin mRNA Expression in the Stress-Responsive Neurocircuitry of Male and Female Rats Prenatally Exposed to Alcohol.

Ni Lan; Kim G.C. Hellemans; Linda Ellis; Joanne Weinberg

BACKGROUND Prenatal alcohol exposure (PAE) results in dysregulation of the offspring hypothalamic-pituitary-adrenal (HPA) axis, increasing sensitivity to stressors and vulnerability to stress-related disorders. We have previously shown that exposure to chronic mild stress (CMS) in adulthood significantly increases anxiety-like behaviors (elevated plus maze) in PAE males and females compared to controls. To explore neurobiological mechanisms linking HPA dysregulation and altered anxiety-like behavior, we investigated neuropeptide (corticotropin-releasing hormone [CRH] and arginine vasopressin [AVP]) expression in brain areas involved in the stress neurocircuitry of animals from this previous behavioral study. METHODS Adult PAE, pair-fed (PF), and ad libitum fed control (C) male and female offspring exposed to CMS or remaining undisturbed (non-CMS) were terminated 30 minutes following behavioral testing. RESULTS In the paraventricular nucleus, CMS increased CRH mRNA levels in PAE compared to PF and C males and increased AVP mRNA levels in PAE compared to C males, with no differential effects for CRH or AVP in females. In the central nucleus of the amygdala, there was an increase in CRH mRNA expression overall, regardless of CMS condition or sex, in PAE compared to C animals. Moreover, in PF males, CMS increased AVP mRNA levels in the paraventricular nucleus, resulting in a decreased CRH/AVP ratio compared to PAE males, and decreased amygdala CRH mRNA compared to that in the non-CMS condition. CONCLUSIONS CMS differentially altered central HPA peptide expression in PAE and PF animals compared to their control counterparts, with a possible shift toward greater CRH mediation of HPA regulation in PAE males, and greater AVP mediation of HPA regulation in PF males. However, changes in CRH and AVP expression do not align fully with the anxiogenic profile observed in our previous behavior study, suggesting that other neuronal substrates and limbic forebrain regions also contribute to increased anxiety-like behavior following CMS.


Psychoneuroendocrinology | 2016

Short- and long-term effects of stress during adolescence on emotionality and HPA function of animals exposed to alcohol prenatally

Charlis Raineki; Leanne Chew; Perry Mok; Linda Ellis; Joanne Weinberg

Prenatal alcohol exposure (PAE) is associated with extremely high rates of psychopathologies, which may be mediated by the hypothalamic-pituitary-adrenal (HPA) dysregulation observed in exposed individuals. Of relevance, PAE carries an increased risk of exposure to stressful environments throughout life. Importantly, stressful experiences during adolescence increase vulnerability to psychopathologies. However, little is known about how adolescent stressful experiences in the context of PAE-induced HPA dysregulation may further alter the developmental trajectory and potentially contribute to the disproportionally high rate of psychopathologies observed in this population. Here we investigate the short- and long-term effects of adolescent chronic mild stress (CMS) on the emergence of anxiety-/depressive-like behaviors (open-field and forced swim test - FST) and on HPA activity (corticosterone and type 1 CRH receptor - CRHR1) in PAE male and female rats. Under non-CMS conditions, open field results indicate that PAE induced inappropriate behavior (increased time in center) in males and females, with increased activity in female adolescents, but anxiety-like behavior in adult PAE females. Conversely, FST results indicate that PAE induced depressive-like behavior in adolescent males. Exposure to CMS resulted in increased activity in adolescent males and anxiety-like behaviors in adult females. Moreover, PAE and/or CMS altered corticosterone and CRHR1 expression in the mPFC and amygdala. Together, these results suggest that PAE and adolescent CMS induce dynamic neurobehavioral alterations that manifest differently depending on the age and sex of the animal. These results highlight the importance of using both sexes as well as an ontogenetic approach when investigating the effects of environmental adversity.

Collaboration


Dive into the Linda Ellis's collaboration.

Top Co-Authors

Avatar

Joanne Weinberg

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Wayne Yu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Charlis Raineki

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ni Lan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Joanna H. Sliwowska

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Wayne K. Yu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kara I. Gabriel

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kim G.C. Hellemans

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Liisa A.M. Galea

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Vivian Lam

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge