Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda F. Nazar is active.

Publication


Featured researches published by Linda F. Nazar.


Nature Materials | 2009

A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries.

Xiulei Ji; Kyu T. Lee; Linda F. Nazar

The Li-S battery has been under intense scrutiny for over two decades, as it offers the possibility of high gravimetric capacities and theoretical energy densities ranging up to a factor of five beyond conventional Li-ion systems. Herein, we report the feasibility to approach such capacities by creating highly ordered interwoven composites. The conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur. The structure provides access to Li+ ingress/egress for reactivity with the sulphur, and we speculate that the kinetic inhibition to diffusion within the framework and the sorption properties of the carbon aid in trapping the polysulphides formed during redox. Polymer modification of the carbon surface further provides a chemical gradient that retards diffusion of these large anions out of the electrode, thus facilitating more complete reaction. Reversible capacities up to 1,320 mA h g(-1) are attained. The assembly process is simple and broadly applicable, conceptually providing new opportunities for materials scientists for tailored design that can be extended to many different electrode materials.


Electrochemical and Solid State Letters | 2001

Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates

Huan Huang; Shih-Chieh Yin; Linda F. Nazar

Nanocomposites of and conductive carbon were prepared by two different methods which lead to enhanced electrochemical accessibility of the Fe redox centers in this insulating material. Method A employs a composite of the phosphate with a carbon xerogel formed from a resorcinol-formaldehyde precursor; method B uses surface-oxidized carbon particles to act as a nucleating agent for phosphate growth. Both particle size minimization and intimate carbon contact are necessary to optimize electrochemical performance. Although both methods succeed for the first criteria, the latter is best achieved with method A, affording excellent characteristics in room temperature, liquid electrolyte cells. The resultant composite achieves 90% theoretical capacity at C/2, with very good rate capability and excellent stability.


Journal of Materials Chemistry | 2010

Advances in Li–S batteries

Xiulei Ji; Linda F. Nazar

Rechargeable Li–S batteries have received ever-increasing attention recently due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li ion batteries based on intercalation reactions. Li–S batteries may represent a next-generation energy storage system, particularly for large scale applications. The obstacles to realize this high energy density mainly include high internal resistance, self-discharge and rapid capacity fading on cycling. These challenges can be met to a large degree by designing novel sulfur electrodes with “smart” nanostructures. This highlight provides an overview of major developments of positive electrodes based on this concept.


Angewandte Chemie | 2015

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage

Dipan Kundu; Elahe Talaie; Victor Duffort; Linda F. Nazar

Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries.


Angewandte Chemie | 2012

Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries

Joerg Schuster; Guang He; Benjamin Mandlmeier; Taeeun Yim; Kyu Tae Lee; Thomas Bein; Linda F. Nazar

Rechargeable lithium–sulfur (Li–S) batteries are attracting increasing attention due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li-ion batteries based on intercalation chemistry. Since the electronic conductivity of sulfur is extremely low, conductive carbon materials with high accessible porosity to “wire” and contain the sulfur are an essential component of the positive electrode. During the past decades, attempts have been made to fabricate C/S composites using carbon black, activated carbons (ACs), and carbon nanotubes (CNTs). Although improvements resulted, the cathodes suffered from inhomogeneous contact between the active material and the electronic conductors. A major step forward in fabricating a uniform C/S composite was reported in 2009. Some of us employed CMK-3, an ordered mesoporous carbon (OMC) featuring high specific surface area and large pore volume as a scaffold. As much as 70 wt% sulfur was incorporated into the uniform 3–4 nm mesopores, and the cells exhibited reversible capacities up to 1350 mAhg , albeit at moderate rates. Inspired by this, another OMC, a bulk bimodal mesoporous carbon (BMC-1) was investigated as a Li-S cathode. The favorable pore dimensions and large pore volume greatly improved the rate performance. An electrode with 40 wt% S showed a high initial discharge capacity of 1135 mAhg 1 at a current rate of 1 C (defined as discharge/ charge in one hour). However, similar to other reports, the capacity is sensitive to the sulfur ratio, dropping to 718 mAhg 1 at a sulfur content of 60 wt%. These results suggest that the texture of the mesoporous carbon could be further enhanced. Recently, Archer et al. reported nanoscale hollow porous C/S spheres prepared through vapor infusion. These materials displayed good cyclability and capacity at a C/5 rate, illustrating the advantages of nanosized porous carbon in the sulfur cathodes. Here we report the synthesis of unique nanoscale spherical OMCs with extremely high bimodal porosities. The particles were investigated as a cathode material and sulfur host in Li–S batteries where they showed high initial discharge capacity and good cyclability without sacrificing rate capability. Unlike bulk porous carbons, these carbon– sulfur sphere electrodes did not display significant capacity fading with the increase of sulfur content in the cathodes. We show that the nanoscale morphology of these materials is of key importance for ensuring very efficient use of the sulfur content even at high cycling rates. Morphology control is a central issue in OMC synthesis. There are numerous examples of mesoporous bulk materials obtained either by hard-templating or soft-templating, including thin films, membranes or free fibers. Most syntheses use evaporation-induced self-assembly (EISA) followed by thermal treatment for template-removal and carbonization. It is a challenge to either create solution-based OMC nanoparticle syntheses or to adapt the established EISA methods to nanoparticles. Only few examples of OMC nanoparticles have been reported so far which are mostly unsuitable for applications in Li–S cells due to low pore volume and/or surface area. Approaches include templating with PMMA colloidal crystals or mesoporous silica nanoparticles, aerosol-assisted synthesis, ultrasonic emulsification or hydrothermal synthesis. Ordered arrays of fused mesoporous carbon spheres were reported by Liu et al. using a macroporous silica as template. Recently Lei et al. reported the synthesis of 65 nm mesoporous carbon nanospheres, with both 2.7 nm mesopores and high textural porosity (surface area of 2400 mg ). These showed promising supercapacitor properties. Our spherical OMC nanoparticles of 300 nm in diameter, prepared by a novel method, can be dispersed in water by sonification to form stable colloidal suspensions. The spherical mesoporous carbon nanoparticles were obtained in a twostep casting process. An opal structure of PMMA spheres was cast with a silica precursor solution to form a silica inverse opal. The inverse opal was then used as template for a triconstituent precursor solution containing resol as the carbon precursor, tetraethylorthosilicate (TEOS) as the silica precursor and the block copolymer Pluronic F127 as a structure-directing agent. Carbonization was followed by etching of the silica template and the silica in the carbon/silica nanocomposite, resulting in the formation of OMC with hierarchical porosity. Through the presence of silica in the [*] J. Schuster, B. Mandlmeier, Prof. Dr. T. Bein Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstrasse 5–13 (Gerhard Ertl Building), 81377 Munich (Germany) E-mail: [email protected] Homepage: http://bein.cup.uni-muenchen.de G. He, T. Yim, K. T. Lee, Prof. Dr. L. F. Nazar Department of Chemistry, University of Waterloo 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada) E-mail: [email protected] [] These authors contributed equally to this work.


Accounts of Chemical Research | 2013

New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes

Scott Evers; Linda F. Nazar

The goal of replacing combustion engines or reducing their use presents a daunting problem for society. Current lithium-ion technologies provide a stepping stone for this dramatic but inevitable change. However, the theoretical gravimetric capacity (∼300 mA h g(-1)) is too low to overcome the problems of limited range in electric vehicles, and their cost is too high to sustain the commercial viability of electrified transportation. Sulfur is the one of the most promising next generation cathode materials. Since the 1960s, researchers have studied sulfur as a cathode, but only recently have great strides been made in preparing viable composites that can be used commercially. Sulfur batteries implement inexpensive, earth-abundant elements at the cathode while offering up to a five-fold increase in energy density compared with present Li-ion batteries. Over the past few years, researchers have come closer to solving the challenges associated with the sulfur cathode. Using carbon or conducting polymers, researchers have wired up sulfur, an excellent insulator, successfully. These conductive hosts also function to encapsulate the active sulfur mass upon reduction/oxidation when highly soluble lithium polysulfides are formed. These soluble discharge products remain a crux of the Li-S cell and need to be contained in order to increase cycle life and capacity retention. The use of mesoporous carbons and tailored designs featuring porous carbon hollow spheres have led to highly stable discharge capacities greater than 900 mA h g(-1) over 100 cycles. In an attempt to fully limit polysulfide dissolution, methods that rely on coating carbon/sulfur composites with polymers have led to surprisingly stable capacities (∼90% of initial capacity retained). Additives will also play an important role in sulfur electrode design. For example, small fractions (> 3 wt%) of porous silica or titania effectively act as polysulfide reservoirs, decreasing their concentration in the electrolyte and leading to a higher utilization of sulfur and increased capacities.


Nature Communications | 2011

Stabilizing lithium–sulphur cathodes using polysulphide reservoirs

Xiulei Ji; Scott Evers; Robert Black; Linda F. Nazar

The possibility of achieving high-energy, long-life storage batteries has tremendous scientific and technological significance. An example is the Li-S cell, which can offer a 3-5-fold increase in energy density compared with conventional Li-ion cells, at lower cost. Despite significant advances, there are challenges to its wide-scale implementation, which include dissolution of intermediate polysulphide reaction species into the electrolyte. Here we report a new concept to mitigate the problem, which relies on the design principles of drug delivery. Our strategy employs absorption of the intermediate polysulphides by a porous silica embedded within the carbon-sulphur composite that not only absorbs the polysulphides by means of weak binding, but also permits reversible desorption and release. It functions as an internal polysulphide reservoir during the reversible electrochemical process to give rise to long-term stabilization and improved coulombic efficiency. The reservoir mechanism is general and applicable to Li/S cathodes of any nature.


Journal of the American Chemical Society | 2012

Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization

Robert Black; Si Hyoung Oh; Jin-Hyon Lee; Taeeun Yim; Brian D. Adams; Linda F. Nazar

Unraveling the fundamentals of Li-O(2) battery chemistry is crucial to develop practical cells with energy densities that could approach their high theoretical values. We report here a straightforward chemical approach that probes the outcome of the superoxide O(2)(-), thought to initiate the electrochemical processes in the cell. We show that this serves as a good measure of electrolyte and binder stability. Superoxide readily dehydrofluorinates polyvinylidene to give byproducts that react with catalysts to produce LiOH. The Li(2)O(2) product morphology is a function of these factors and can affect Li-O(2) cell performance. This methodology is widely applicable as a probe of other potential cell components.


Angewandte Chemie | 2015

Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium–Sulfur Batteries†

Xiao Liang; Arnd Garsuch; Linda F. Nazar

Lithium-sulfur batteries are amongst the most promising candidates to satisfy emerging energy-storage demands. Suppression of the polysulfide shuttle while maintaining high sulfur content is the main challenge that faces their practical development. Here, we report that 2D early-transition-metal carbide conductive MXene phases-reported to be impressive supercapacitor materials-also perform as excellent sulfur battery hosts owing to their inherently high underlying metallic conductivity and self-functionalized surfaces. We show that 70 wt % S/Ti2 C composites exhibit stable long-term cycling performance because of strong interaction of the polysulfide species with the surface Ti atoms, demonstrated by X-ray photoelectron spectroscopy studies. The cathodes show excellent cycling performance with specific capacity close to 1200 mA h g(-1) at a five-hour charge/discharge (C/5) current rate. Capacity retention of 80 % is achieved over 400 cycles at a two-hour charge/discharge (C/2) current rate.


Energy and Environmental Science | 2011

High “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons

Guang He; Xiulei Ji; Linda F. Nazar

A highly ordered mesoporous carbon with a bimodal pore structure which exhibits a high specific area and large pore volume, was synthesized by a triblock-copolymer-templating approach. This optimized framework served as the scaffold for the preparation of carbon/sulfur (C/S) nanocomposites that serve as novel cathodes for Li-S batteries. They exhibit high discharge capacities and good cycling stability at very high current rates of 1675 mA g−1 (1 C), which can be attributed to the unique bimodal porous structure of the carbon. The small mesopores contain the majority of the sulfur mass and aid in suppressing the diffusion of polysulfide species into the electrolyte, whilst the large interconnected cylindrical pores favour rapid transport of solvated Li+ on charge/discharge. Additional doping with hydrophilic nanoporous silica also aids in capacity retention on cycling.

Collaboration


Dive into the Linda F. Nazar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Liang

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar

Quan Pang

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoqi Sun

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar

Dipan Kundu

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Leroux

University of Waterloo

View shared research outputs
Researchain Logo
Decentralizing Knowledge