Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Feldbrügge is active.

Publication


Featured researches published by Linda Feldbrügge.


Alimentary Pharmacology & Therapeutics | 2016

Aspirin use is associated with lower indices of liver fibrosis among adults in the United States.

Z. Gordon Jiang; Linda Feldbrügge; Elliot B. Tapper; Yury Popov; Tahereh Ghaziani; Nezam H. Afdhal; Simon C. Robson; Kenneth J. Mukamal

Recent animal studies have shown that platelets directly activate hepatic stellate cells to promote liver fibrosis, whereas anti‐platelet agents decrease liver fibrosis. It is unknown whether platelet inhibition by aspirin prevents liver fibrosis in humans.


Purinergic Signalling | 2014

Characterization of circulating microparticle-associated CD39 family ecto-nucleotidases in human plasma

Z. Gordon Jiang; Yan Wu; Eva Csizmadia; Linda Feldbrügge; Keiichi Enjyoji; John Tigges; Vasilis Toxavidis; Holger Stephan; Christina Müller; C. James McKnight; Alan C. Moss; Simon C. Robson

Phosphohydrolysis of extracellular ATP and ADP is an essential step in purinergic signaling that regulates key pathophysiological processes, such as those linked to inflammation. Classically, this reaction has been known to occur in the pericellular milieu catalyzed by membrane bound cellular ecto-nucleotidases, which can be released in the form of both soluble ecto-enzymes as well as being associated with exosomes. Circulating ecto-nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1/CD39) and adenylate kinase 1 (AK1) activities have been shown to be present in plasma. However, other ecto-nucleotidases have not been characterized in depth. An in vitro ADPase assay was developed to probe the ecto-enzymes responsible for the ecto-nucleotidase activity in human platelet-free plasma, in combination with various specific biochemical inhibitors. Identities of ecto-nucleotidases were further characterized by chromatography, immunoblotting, and flow cytometry of circulating exosomes. We noted that microparticle-bound E-NTPDases and soluble AK1 constitute the highest levels of ecto-nucleotidase activity in human plasma. All four cell membrane expressed E-NTPDases are also found in circulating microparticles in human plasma, inclusive of: CD39, NTPDase 2 (CD39L1), NTPDase 3 (CD39L3), and NTPDase 8. CD39 family members and other ecto-nucleotidases are found on distinct microparticle populations. A significant proportion of the microparticle-associated ecto-nucleotidase activity is sensitive to POM6, inferring the presence of NTPDases, either −2 or/and −3. We have refined ADPase assays of human plasma from healthy volunteers and have found that CD39, NTPDases 2, 3, and 8 to be associated with circulating microparticles, whereas soluble AK1 is present in human plasma. These ecto-enzymes constitute the bulk circulating ADPase activity, suggesting a broader implication of CD39 family and other ecto-enzymes in the regulation of extracellular nucleotide metabolism.


Liver International | 2016

Steatohepatitis and liver fibrosis are predicted by the characteristics of very low density lipoprotein in nonalcoholic fatty liver disease

Zhenghui G. Jiang; Elliot B. Tapper; Margery A. Connelly; Carolina F. M. G. Pimentel; Linda Feldbrügge; Misung Kim; Sarah A. Krawczyk; Nezam H. Afdhal; Simon C. Robson; Mark A. Herman; James D. Otvos; Kenneth J. Mukamal; Michelle Lai

A major challenge in the management of nonalcoholic fatty liver disease (NAFLD) is to identify patients with nonalcoholic steatohepatitis (NASH) and early liver fibrosis. The progression of NAFLD is accompanied by distinctive changes in very low density lipoprotein (VLDL), a lipoprotein particle produced exclusively in the liver. Herein, we sought to determine the characteristics of VLDL profiles associated with NASH and liver fibrosis.


Journal of Hepatology | 2017

CD39 limits P2X7 receptor inflammatory signaling and attenuates sepsis-induced liver injury

Luiz Eduardo Baggio Savio; Paola A. Mello; Vanessa R. Figliuolo; Thiago F. de Avelar Almeida; Patrícia T. Santana; Suellen Oliveira; Claudia Silva; Linda Feldbrügge; Eva Csizmadia; Richard D. Minshall; Maria Serena Longhi; Yan Wu; Simon C. Robson; Robson Coutinho-Silva

BACKGROUND & AIMS The severity of sepsis can be linked to excessive inflammatory responses resulting in hepatic injury. P2X7 receptor activation by extracellular ATP (eATP) exacerbates inflammation by augmenting cytokine production; while CD39 (ENTPD1) scavenges eATP to generate adenosine, thereby limiting P2X7 activation and resulting in A2A receptor stimulation. We aim to determine how the functional interaction of P2X7 receptor and CD39 control the macrophage response, and consequently impact on sepsis and liver injury. METHODS Sepsis was induced by cecal ligation and puncture in C57BL/6 wild-type (WT) and CD39-/- mice. Several in vitro assays were performed using peritoneal or bone marrow derived macrophages to determine CD39 ectonucleotidase activity and its role in sepsis-induced liver injury. RESULTS CD39 expression in macrophages limits ATP-P2X7 receptor pro-inflammatory signaling. P2X7 receptor paradoxically boosts CD39 activity. Inhibition and/or deletion of P2X7 receptor in LPS-primed macrophages attenuates cytokine production and inflammatory signaling as well as preventing ATP-induced increases in CD39 activity. Septic CD39-/- mice exhibit higher levels of inflammatory cytokines and show more pronounced liver injury than WT mice. Pharmacological P2X7 blockade largely prevents tissue damage, cell apoptosis, cytokine production, and the activation of inflammatory signaling pathways in the liver from septic WT, while only attenuating these outcomes in CD39-/- mice. Furthermore, the combination of P2X7 blockade with adenosine A2A receptor stimulation completely inhibits cytokine production, the activation of inflammatory signaling pathways, and protects septic CD39-/- mice against liver injury. CONCLUSIONS CD39 attenuates sepsis-associated liver injury by scavenging eATP and ultimately generating adenosine. We propose boosting of CD39 would suppress P2X7 responses and trigger adenosinergic signaling to limit systemic inflammation and restore liver homeostasis during the acute phase of sepsis. Lay summary: CD39 expression in macrophages limits P2X7-mediated pro-inflammatory responses, scavenging extracellular ATP and ultimately generating adenosine. CD39 genetic deletion exacerbates sepsis-induced experimental liver injury. Combinations of a P2X7 antagonist and adenosine A2A receptor agonist are hepatoprotective during the acute phase of abdominal sepsis.


Inflammatory Bowel Diseases | 2016

Luminal Extracellular Vesicles (EVs) in Inflammatory Bowel Disease (IBD) Exhibit Proinflammatory Effects on Epithelial Cells and Macrophages.

Shuji Mitsuhashi; Linda Feldbrügge; Eva Csizmadia; Masato Mitsuhashi; Simon C. Robson; Alan C. Moss

Background:Extracellular vesicles (EVs) are membrane-enclosed particles released by cells as a means of intercellular communication. They are potential novel biomarkers, as they are readily isolated from body fluids, and their composition reflects disease pathways. Whether these particles are released from sites of intestinal inflammation in inflammatory bowel disease (IBD) has not previously been determined. Methods:EVs were isolated by ultracentrifugation of colonic luminal fluid aspirates and characterized according to surface proteins, and constituent mRNA and proteins. The effects of EVs on colonic epithelial cells and macrophages in culture were assessed at the transcriptional, translational, and functional levels. Results:Intestinal luminal aspirates contained abundant EVs, at a mean concentration of 4.3 × 1011 particles/mL and with a mean diameter of 146 nm. EVs from patients with IBD with a high endoscopic score (≥1) contained significantly higher mRNA and protein levels of interleukin 6 (IL-6), IL-8, IL-10, and tumor necrosis factor &agr; than EVs from healthy controls. EVs were absorbed by cultured colonic epithelial cells, leading to an increased translation of IL-8 protein by recipient cells when treated with EVs from patients with IBD. EVs and EV-treated epithelial cells induced migration of a significantly greater number of macrophages than epithelial cells alone. Conclusions:EVs shed from sites of intestinal inflammation in patients with IBD have a distinct mRNA and protein profile from those of healthy individuals. These EVs have proinflammatory effects on the colonic epithelium, in vitro. Their stability in luminal samples and their mRNA and protein content identify them as a potential fecal biomarker that reflects mucosal inflammatory pathways.


JCI insight | 2017

Bilirubin suppresses Th17 immunity in colitis by upregulating CD39

Maria Serena Longhi; Marta Vuerich; Alireza Kalbasi; Jessica E. Kenison; Ada Yeste; Eva Csizmadia; Byron P. Vaughn; Linda Feldbrügge; Shuji Mitsuhashi; Barbara Wegiel; Leo E. Otterbein; Alan C. Moss; Francisco J. Quintana; Simon C. Robson

Unconjugated bilirubin (UCB), a product of heme oxidation, has known immunosuppressant properties but the molecular mechanisms, other than antioxidant effects, remain largely unexplored. We note that UCB modulates T helper type 17 (Th17) immune responses, in a manner dependent upon heightened expression of CD39 ectonucleotidase. UCB has protective effects in experimental colitis, where it enhances recovery after injury and preferentially boosts IL-10 production by colonic intraepithelial CD4+ cells. In vitro, UCB confers immunoregulatory properties on human control Th17 cells, as reflected by increased levels of FOXP3 and CD39 with heightened cellular suppressor ability. Upregulation of CD39 by Th17 cells is dependent upon ligation of the aryl hydrocarbon receptor (AHR) by UCB. Genetic deletion of CD39, as in Entpd1-/- mice, or dysfunction of AHR, as in Ahrd mice, abrogates these UCB salutary effects in experimental colitis. However, in inflammatory bowel disease (IBD) samples, UCB fails to confer substantive immunosuppressive properties upon Th17 cells, because of decreased AHR levels under the conditions tested in vitro. Immunosuppressive effects of UCB are mediated by AHR resulting in CD39 upregulation by Th17. Boosting downstream effects of AHR via UCB or enhancing CD39-mediated ectoenzymatic activity might provide therapeutic options to address development of Th17 dysfunction in IBD.


Scientific Reports | 2018

The nanomolar sensing of nicotinamide adenine dinucleotide in human plasma using a cycling assay in albumin modified simulated body fluids

Philipp Brunnbauer; Annekatrin Leder; Can Kamali; Kaan Kamali; Eriselda Keshi; Katrin Splith; S Wabitsch; Philipp Haber; Georgi Atanasov; Linda Feldbrügge; Igor M. Sauer; Johann Pratschke; Moritz Schmelzle; Felix Krenzien

Nicotinamide adenine dinucleotide (NAD), a prominent member of the pyridine nucleotide family, plays a pivotal role in cell-oxidation protection, DNA repair, cell signalling and central metabolic pathways, such as beta oxidation, glycolysis and the citric acid cycle. In particular, extracellular NAD+ has recently been demonstrated to moderate pathogenesis of multiple systemic diseases as well as aging. Herein we present an assaying method, that serves to quantify extracellular NAD+ in human heparinised plasma and exhibits a sensitivity ranging from the low micromolar into the low nanomolar domain. The assay achieves the quantification of extracellular NAD+ by means of a two-step enzymatic cycling reaction, based on alcohol dehydrogenase. An albumin modified revised simulated body fluid was employed as standard matrix in order to optimise enzymatic activity and enhance the linear behaviour and sensitivity of the method. In addition, we evaluated assay linearity, reproducibility and confirmed long-term storage stability of extracellular NAD+ in frozen human heparinised plasma. In summary, our findings pose a novel standardised method suitable for high throughput screenings of extracellular NAD+ levels in human heparinised plasma, paving the way for new clinical discovery studies.


Purinergic Signalling | 2018

Mononuclear-cell-derived microparticles attenuate endothelial inflammation by transfer of miR-142-3p in a CD39 dependent manner

Stephanie Kuhn; Katrin Splith; Cindy Ballschuh; Linda Feldbrügge; Felix Krenzien; Georgi Atanasov; Christian Benzing; Hans-Michael Hau; Cornelius Engelmann; T. Berg; Jan Schulte am Esch; Johann Pratschke; Simon C. Robson; Moritz Schmelzle

Plasma microparticles (MP) bear functional active ectonucleotidases of the CD39 family with implications in vascular inflammation. MP appear to be able to fuse with cells and transfer genetic information. Here, we tested whether levels of different immunomodulatory microRNAs (miRs) in plasma MP are modulated by CD39 after experimental hepatectomy. We further investigated whether horizontal transfer of miR-142-3p between mononuclear (MNC) and endothelial cells via MP is regulated by purinergic signaling. Partial hepatectomy was performed in C57BL/6 wild type and Cd39 null mice. MP were collected via ultracentrifugation. MNC were stimulated with nucleotides and nucleosides, in vitro, and tested for miR-142-3p levels. Fusion of MNC-derived MP and endothelial cells with subsequent transfer of miR-142-3p was imaged by flow cytometry and confocal microscopy. Endothelial inflammation and apoptosis were quantified after transfection with miR-142-3p. Significantly lower miR-142-3p levels were observed in plasma MP of Cd39 null mice after partial hepatectomy, when compared to C57BL/6 wild types (p < 0.05). In contrast to extracellular nucleotides, anti-inflammatory adenosine significantly increased miR-142-3p levels in MNC-derived MP, in vitro (p < 0.05). MNC-derived MP are able to transfer miR-142-3p to endothelial cells by fusion. Transfection of endothelial cells with miR-142-3p decreased TNF-α levels (p < 0.05) and endothelial apoptosis (p < 0.05). MiR-142-3p levels in MNC-derived MP are modulated by nucleoside signaling and might reflect compensatory responses in vascular inflammation. Our data suggest the transfer of genetic information via shed MP as a putative mechanism of intercellular communication—with implications in organ regeneration.


Purinergic Signalling | 2018

Distinct roles of ecto-nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in liver regeneration and fibrosis

Linda Feldbrügge; Z. Gordon Jiang; Eva Csizmadia; Shuji Mitsuhashi; Stephanie Tran; Eric U. Yee; Sonja Rothweiler; Kahini A. Vaid; Jean Sévigny; Moritz Schmelzle; Yury Popov; Simon C. Robson

Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) are cell surface-located transmembrane ecto-enzymes of the CD39 superfamily which regulate inflammation and tissue repair by catalyzing the phosphohydrolysis of extracellular nucleotides and modulating purinergic signaling. In the liver, NTPDase2 is reportedly expressed on portal fibroblasts, but its functional role in regulating tissue regeneration and fibrosis is incompletely understood. Here, we studied the role of NTPDase2 in several models of liver injury using global knockout mice. Liver regeneration and severity of fibrosis were analyzed at different time points after exposure to carbon tetrachloride (CCl4) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or partial hepatectomy in C57BL/6 wild-type and globally NTPDase2-deficient (Entpd2 null) mice. After chronic CCl4 intoxication, Entpd2 null mice exhibit significantly more severe liver fibrosis, as assessed by collagen content and histology. In contrast, deletion of NTPDase2 does not have a substantial effect on biliary-type fibrosis in the setting of DDC feeding. In injured livers, NTPDase2 expression extends from the portal areas to fibrotic septae in pan-lobular (CCl4-induced) liver fibrosis; the same pattern was observed, albeit to a lesser extent in biliary-type (DDC-induced) fibrosis. Liver regeneration after partial hepatectomy is not substantively impaired in global Entpd2 null mice. NTPDase2 protects from liver fibrosis resulting from hepatocellular injury induced by CCl4. In contrast, Entpd2 deletion does not significantly impact fibrosis secondary to DDC injury or liver regeneration after partial hepatectomy. Our observations highlight mechanisms relating to purinergic signaling in the liver and indicate possible therapeutic avenues and new cellular targets to test in the management of hepatic fibrosis.


Oncotarget | 2018

Angiogenic miRNAs, the angiopoietin axis and related TIE2-expressing monocytes affect outcomes in cholangiocarcinoma

Georgi Atanasov; Corinna Dietel; Linda Feldbrügge; Christian Benzing; Felix Krenzien; Andreas Brandl; Shadi Katou; Katrin Schierle; Simon C. Robson; Katrin Splith; Georg Wiltberger; Anja Reutzel-Selke; Sven Jonas; Andreas Pascher; Marcus Bahra; Johann Pratschke; Moritz Schmelzle

Background Tumour angiogenesis is modulated on both an epigenetic and protein level and has potential implications for immune cell responses. However, the importance of related angiogenic biomarkers in cholangiocarcinoma (CCA) is unknown. This study assessed human CCA samples for the expression of angiogenesis-associated microRNAs, angiopoietins (Angs) and monocytes expressing the Ang-receptor, TIE2, with regards to prognostic significance after liver resection. Methods Angiogenic miRNAs were analysed in frozen samples of intrahepatic CCA (iCC; n = 43) and hilar CCA (HC; n = 45). Ang-1 and Ang-2, as well as TIE2-expressing monocytes (TEMs), were detected in paraffin-embedded iCC sections (n = 88). MiRNA expression and the abundance of TEMs and Angs were correlated with clinicopathological characteristics and survival. Results MiR-126 was downregulated in 76.7% of all CCA samples, with high relative expression associated with smaller tumours and reduced lymph node metastasis. High Ang-1 expression was associated with less lymphangiosis carcinomatosa and better histological grading (all p < 0.05). The absence of TEMs in iCC correlated with elevated CA19-9 levels. High relative miR-126 and low miR-128 levels were associated with improved survival in iCC and HC, respectively (all p < 0.05). High miR-126, low miR-128 and TEMs were independent prognostic factors for recurrence-free and overall survival (all p < 0.05). Conclusions These results suggest that angiogenic miRNAs, Angs and TEMs are of prognostic value in CCA. In addition to the possible functional links between angiogenic miRNA expression profiles, Angs and immune-cell responses by TEMs, these data have clinical implications as novel diagnostic tools.

Collaboration


Dive into the Linda Feldbrügge's collaboration.

Top Co-Authors

Avatar

Simon C. Robson

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eva Csizmadia

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan C. Moss

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge