Linda Fritts
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Linda Fritts.
Journal of Virology | 2005
Kristina Abel; David M. Rocke; Barinderpal Chohan; Linda Fritts; Christopher J. Miller
ABSTRACT The current knowledge about early innate immune responses at mucosal sites of human immunodeficiency virus (HIV) entry is limited but likely to be important in the design of effective HIV vaccines against heterosexual transmission. This study examined the temporal and anatomic relationship between virus replication, lymphocyte depletion, and cytokine gene expression levels in mucosal and lymphoid tissues in a vaginal-transmission model of HIV in rhesus macaques. The results of the study show that the kinetics of cytokine gene expression levels in the acute phase of infection are positively correlated with virus replication in a tissue. Thus, cytokine responses after vaginal simian immunodeficiency virus (SIV) inoculation are earliest and strongest in mucosal tissues of the genital tract and lowest in systemic lymphoid tissues. Importantly, the early cytokine response was dominated by the induction of proinflammatory cytokines, while the induction of cytokines with antiviral activity, alpha/beta interferon, occurred too late to prevent virus replication and dissemination. Thus, the early cytokine response favors immune activation, resulting in the recruitment of potential target cells for SIV. Further, unique cytokine gene expression patterns were observed in distinct anatomic locations with a rapid and persistent inflammatory response in the gut that is consistent with the gut being the major site of early CD4 T-cell depletion in SIV infection.
Journal of Virology | 2003
Kristina Abel; Lara Compton; Tracy Rourke; David C. Montefiori; Ding Lu; Kristina Rothaeusler; Linda Fritts; Kristen Bost; Christopher J. Miller
ABSTRACT Attenuated primate lentivirus vaccines provide the most consistent protection against challenge with pathogenic simian immunodeficiency virus (SIV). Thus, they provide an excellent model to examine the influence of the route of immunization on challenge outcome and to study vaccine-induced protective anti-SIV immune responses. In the present study, rhesus macaques were immunized with live nonpathogenic simian-human immunodeficiency virus (SHIV) 89.6 either intravenously or mucosally (intranasally or intravaginally) and then challenged intravaginally with pathogenic SIVmac239. The route of immunization did not affect mucosal challenge outcome after a prolonged period of systemic infection with the nonpathogenic vaccine virus. Further, protection from the SIV challenge was associated with the induction of multiple host immune effector mechanisms. A comparison of immune responses in vaccinated-protected and vaccinated-unprotected animals revealed that vaccinated-protected animals had higher frequencies of SIV Gag-specific cytotoxic T lymphocytes and gamma interferon (IFN-γ)-secreting cells during the acute phase postchallenge. Vaccinated-protected animals also had a more pronounced increase in peripheral blood mononuclear cell IFN-α mRNA levels than did the vaccinated-unprotected animals in the first few weeks after challenge. Thus, innate as well as cellular anti-SIV immune responses appeared to contribute to the SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239.
Journal of Virology | 2012
Huma Qureshi; Zhong Min Ma; Ying Huang; Gregory Hodge; Michael A. Thomas; Janet DiPasquale; Veronique Desilva; Linda Fritts; Andrew J. Bett; Danilo R. Casimiro; John W. Shiver; Marjorie Robert-Guroff; Michael N. Robertson; Michael B. McChesney; Peter B. Gilbert; Christopher J. Miller
ABSTRACT The Step Trial showed that the MRKAd5 HIV-1 subtype B Gag/Pol/Nef vaccine did not protect men from HIV infection or reduce setpoint plasma viral RNA (vRNA) levels but, unexpectedly, it did modestly enhance susceptibility to HIV infection in adenovirus type 5 (Ad5)-seropositive, uncircumcised men. As part of the process to understand the results of the Step Trial, we designed a study to determine whether rhesus macaques chronically infected with a host-range mutant Ad5 (Ad5hr) and then immunized with a replication defective Ad5 SIVmac239 Gag/Pol/Nef vaccine were more resistant or susceptible to SIV infection than unimmunized rhesus macaques challenged with a series of escalating dose penile exposures to SIVmac 251. The Ad5 SIV vaccine induced CD8+ T cell responses in 70% of the monkeys, which is similar to the proportion of humans that responded to the vaccine in the Step Trial. However, the vaccine did not protect vaccinated animals from penile SIV challenge. At the lowest SIV exposure dose (103 50% tissue culture infective doses), 2 of 9 Ad5-seropositive animals immunized with the Ad5 SIV vaccine became infected compared to 0 of 34 animals infected in the other animal groups (naive animals, Ad5-seropositive animals immunized with the empty Ad5 vector, Ad5-seronegative animals immunized with the Ad5 SIV vaccine, and Ad5-seronegative animals immunized with the empty Ad5 vector). Penile exposure to more concentrated virus inocula produced similar rates of infection in all animal groups. Although setpoint viral loads were unaffected in Step vaccinees, the Ad5 SIV-immunized animals had significantly lower acute-phase plasma vRNA levels compared to unimmunized animals. Thus, the results of the nonhuman primate (NHP) study described here recapitulate the lack of protection against HIV acquisition seen in the Step Trial and suggest a greater risk of infection in the Ad5-seropositive animals immunized with the Ad5 SIV vaccine. Further studies are necessary to confirm the enhancement of virus acquisition and to discern associated mechanisms.
Journal of Virology | 2006
Kristina Abel; Bapi Pahar; Koen K. A. Van Rompay; Linda Fritts; Clarissa Sin; Kimberli A. Schmidt; Roxana Colón; Mike McChesney; Marta L. Marthas
ABSTRACT A vaccine to protect human immunodeficiency virus (HIV)-exposed infants is an important goal in the global fight against the HIV pandemic. Two major challenges in pediatric HIV vaccine design are the competence of the neonatal/infant immune system in comparison to the adult immune system and the frequent exposure to HIV via breast-feeding. Based on the hypothesis that an effective vaccine needs to elicit antiviral immune responses directly at the site of virus entry, the pattern of virus dissemination in relation to host immune responses was determined in mucosal and lymphoid tissues of infant macaques at 1 week after multiple oral exposures to simian immunodeficiency virus (SIV). The results show that SIV disseminates systemically by 1 week. Infant macaques can respond rapidly to virus challenge and mount strong innate immune responses. However, despite systemic infection, these responses are most pronounced in tissues close to the viral entry site, with the tonsil being the primary site of virus replication and induction of immune responses. Thus, distinct anatomic compartments are characterized by unique cytokine gene expression patterns. Importantly, the early response at mucosal entry sites is dominated by the induction of proinflammatory cytokines, while cytokines with direct antiviral activity, alpha/beta interferons, are only minimally induced. In contrast, both antiviral and proinflammatory cytokines are induced in lymphoid tissues. Thus, although infant macaques can respond quickly to oral viral challenge, the locally elicited immune responses at mucosal entry sites are likely to favor immune activation and thereby virus replication and are insufficient to limit virus replication and dissemination.
Clinical and Vaccine Immunology | 2005
Kristina Abel; Yichuan Wang; Linda Fritts; Eleonora Sanchez; Eugene Chung; Patricia Fitzgerald-Bocarsly; Arthur M. Krieg; Christopher J. Miller
ABSTRACT To determine if deoxycytidyl-deoxyguanosine oligonucleotides (CpG ODN) can be used effectively as nonspecific inducers of innate immune defenses for preventative or therapeutic interventions in infectious disease models for nonhuman primates, the present study evaluated the response of rhesus monkey peripheral blood mononuclear cells to three different synthetic CpG ODN classes by defining the cytokine gene expression patterns and by characterizing IFN-α/β responses. Depending on the type and dose of CpG ODN used for stimulation, distinct gene expression patterns were induced. CpG ODN class A (CpG-A ODN) and CpG-C ODN, but not CpG-B ODN, were potent inducers of alpha interferon (IFN-α), and this response was due to IFN-α production by TLR9-positive plasmacytoid dendritic cells. Importantly, there was a dose-dependent increase in IFN-α responses to CpG-A ODN but a dose-dependent decrease in IFN-α responses by CpG-B ODN. The most sustained IFN-α response was induced by CpG-A ODN and was associated with a stronger induction of interferon regulatory factor 7 and the induction of several interferon-stimulated genes. In contrast, and independent of the dose, CpG-B ODN were the weakest inducers of IFN-α but the most potent inducers of proinflammatory cytokines. CpG-C ODN induced cytokine gene expression patterns that were intermediate between those of CpG-A and CpG-B ODN. Thus, the different types of CpG ODN induce different post-TLR9 signaling pathways that result in distinct cytokine gene expression patterns. Based on these findings, A and C class CpG ODN, but not B class CpG ODN, may be particularly suited for use as therapeutic or prophylactic antiviral interventions.
AIDS Research and Human Retroviruses | 2011
Zhong Min Ma; Brandon F. Keele; Huma Qureshi; Mars Stone; Veronique Desilva; Linda Fritts; Jeffrey D. Lifson; Christopher J. Miller
Abstract Despite the fact that approximately half of all HIV patients acquire infection through penile exposure, there have been no recent studies of penile SIV transmission in rhesus macaques and the nature of the virus variants transmitted, target cells, and pathways of virus dissemination to systemic lymphoid tissues are not known. Single genome amplification (SGA) and sequencing of HIV-1 RNA in plasma of acutely infected humans allows the identification and enumeration of transmitted/founder viruses responsible for productive systemic infection. Studies using the SGA strategy have shown that intrarectal and intravaginal SIV transmission to macaques recapitulates key features of human HIV transmission. To date, no studies have used the SGA assay to identify transmitted/founder virus(es) in macaques infected after penile SIV exposure. Here we report that SIV can be transmitted by penile SIV exposure. However, similar exposure to a high-dose inoculum infects only about half the animals, which is about 50% less efficient transmission than occurs after vaginal SIV challenge. In addition, only a single SIV env variant established the systemic infection in all five animals that became infected after penile exposure, a result that is consistent with low incidence and few transmitted HIV variants in heterosexually infected men. Our results suggest that the penile transmission of SIVmac251 in rhesus macaques recapitulates the key features of penile HIV-1 transmission and may provide insight into host or viral factors that permit penile transmission and dissemination. Furthermore, this SIV challenge exposure route will be useful in testing vaccines and other prophylactic approaches.
Vaccine | 2009
Marla Lay; Bernadette Callejo; Stella Chang; David K. Hong; David B. Lewis; Timothy D. Carroll; Shannon Matzinger; Linda Fritts; Christopher J. Miller; John F. Warner; Lily Liang; Jeffery Fairman
Safe and effective adjuvants for influenza vaccines that could increase both the levels of neutralizing antibody, including against drifted viral subtypes, and T-cell immunity would be a major advance in vaccine design. The JVRS-100 adjuvant, consisting of DOTIM/cholesterol cationic liposome-DNA complexes, is particularly promising for vaccines that require induction of high levels of antibody and T-cell immunity, including CD8(+) cytotoxic T lymphocytes (CTL). Inclusion of protein antigens with JVRS-100 results in the induction of enhanced humoral and cell-mediated (i.e., CD4(+) and CD8(+) T cells) immune responses. The JVRS-100 adjuvant combined with a split trivalent influenza vaccine (Fluzone-sanofi pasteur) elicited increased antibody and T-cell responses in mice and non-human primates compared to vaccination with Fluzone alone. Mice vaccinated with JVRS-100-Fluzone and challenged with antigenically drifted strains of H1N1 (PR/8/34) and influenza B (B/Lee/40) viruses had higher grade protection, as measured by attenuation of weight loss and increased survival, compared to recipients of unadjuvanted vaccine. The results indicate that the JVRS-100 adjuvant substantially increases immunogenicity and protection from drifted-strain challenge using an existing influenza vaccine.
Journal of Virology | 2005
Eun Young Kim; Marc Busch; Kristina Abel; Linda Fritts; Patty Bustamante; Jenny Stanton; Ding Lu; Samuel Wu; Jenny Glowczwskie; Tracy Rourke; Derek Bogdan; Mike Piatak; Jeffrey D. Lifson; Ronald C. Desrosiers; Steven M. Wolinsky; Christopher J. Miller
ABSTRACT To characterize the occurrence, frequency, and kinetics of retroviral recombination in vivo, we intravaginally inoculated rhesus macaques, either simultaneously or sequentially, with attenuated simian immunodeficiency virus (SIV) strains having complementary deletions in their accessory genes and various degrees of replication impairment. In monkeys inoculated simultaneously with SIVmac239Δvpx/Δvpr and SIVmac239Δnef, recombinant wild-type (wt) virus and wild-type levels of plasma viral RNA (vRNA) were detected in blood by 2 weeks postinoculation. In monkeys inoculated first with SIVmac239Δvpx/Δvpr and then with SIVmac239Δnef, recombination occurred but was associated with lower plasma vRNA levels than plasma vRNA levels seen for monkeys inoculated intravaginally with wt SIVmac239. In one monkey, recombination occurred 6 weeks after the challenge with SIVmac239Δnef when plasma SIVmac239Δvpx/Δvpr RNA levels were undetectable. In monkeys inoculated first with the more highly replicating strain, SIVmac239Δnef, and then with SIVmac239Δvpx/Δvpr, wild-type recombinant virus was not detected in blood or tissues. Instead, a virus that had repaired the deletion in the nef gene by a compensatory mutation was found in one animal. Overall, recombinant SIV was eventually found in four of six animals intravaginally inoculated with the two SIVmac239 deletion mutants. These findings show that recombination can occur readily in vivo after mucosal SIV exposure and thus contributes to the generation of viral genetic diversity and enhancement of viral fitness.
Vaccine | 2011
Timothy D. Carroll; Shannon R. Matzinger; Mario Barro; Linda Fritts; Michael B. McChesney; Christopher J. Miller; Robert E. Johnston
Venezuelan equine encephalitis virus replicon particles (VRP) without a transgene (null VRP) have been used to adjuvant effective humoral [1], cellular [2], and mucosal [3] immune responses in mice. To assess the adjuvant activity of null VRP in the context of a licensed inactivated influenza virus vaccine, rhesus monkeys were immunized with Fluzone(®) alone or Fluzone(®) mixed with null VRP and then challenged with a human seasonal influenza isolate, A/Memphis/7/2001 (H1N1). Compared to Fluzone(®) alone, Fluzone(®)+null VRP immunized animals had stronger influenza-specific CD4(+) T cell responses (4.4 fold) with significantly higher levels of virus-specific IFN-γ (7.6 fold) and IL-2 (5.3 fold) producing CD4+ T cells. Fluzone(®)+null VRP immunized animals also had significantly higher plasma anti-influenza IgG (p<0.0001, 1.3 log) and IgA (p<0.05, 1.2 log) levels. In fact, the mean plasma anti-influenza IgG titers after one Fluzone(®)+null VRP immunization was 1.2 log greater (p<0.04) than after two immunizations with Fluzone(®) alone. After virus challenge, only Fluzone(®)+null VRP immunized monkeys had a significantly lower level of viral replication (p<0.001) relative to the unimmunized control animals. Although little anti-influenza antibody was detected in the respiratory secretions after immunization, strong anamnestic anti-influenza IgG and IgA responses were present in secretions of the Fluzone(®)+null VRP immunized monkeys immediately after challenge. There were significant inverse correlations between influenza RNA levels in tracheal lavages and plasma anti-influenza HI and IgG anti-influenza antibody titers prior to challenge. These results demonstrate that null VRP dramatically improve both the immunogenicity and protection elicited by a licensed inactivated influenza vaccine.
Virology | 2009
Mars Stone; Zhong Min Ma; Meritxell Genescà; Linda Fritts; Shelley Blozois; Michael B. McChesney; Christopher J. Miller
In non-human primate models of AIDS, attenuated lentiviruses provide the most reliable protection from challenge with pathogenic virus but the extent to which the vaccine virus replicates after challenge is unclear. At 7 and 14 days after vaginal challenge with pathogenic SIVmac239, plasma SIVenv RNA levels were significantly lower in female macaques immunized 6 months earlier with live, attenuated SHIV89.6 compared to unimmunized control animals. In 2 SHIV-immunized, unprotected macaques SIV replication produced moderate-level plasma viremia with dissemination of challenge virus to all tissues on day 14 after challenge. In protected, SHIV-immunized monkeys, SIV replication was controlled in all tissues, from the day of challenge through 14 days post-challenge. Further, in CD8(+) T cell-depleted SHIV-immunized animals, SIV replication and dissemination were more rapid than in control animals. These findings suggest that replication of a pathogenic AIDS virus can be controlled at the site of mucosal inoculation by live-attenuated lentivirus immunization.