Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda H. Geiser is active.

Publication


Featured researches published by Linda H. Geiser.


BioScience | 2003

Nitrogen Emissions, Deposition, and Monitoring in the Western United States

Mark E. Fenn; Richard Haeuber; Gail S. Tonnesen; Jill S. Baron; Susanne Grossman-Clarke; Diane Hope; Daniel A. Jaffe; Scott Copeland; Linda H. Geiser; Heather M. Rueth; James O. Sickman

Abstract Nitrogen (N) deposition in the western United States ranges from 1 to 4 kilograms (kg) per hectare (ha) per year over much of the region to as high as 30 to 90 kg per ha per year downwind of major urban and agricultural areas. Primary N emissions sources are transportation, agriculture, and industry. Emissions of N as ammonia are about 50% as great as emissions of N as nitrogen oxides. An unknown amount of N deposition to the West Coast originates from Asia. Nitrogen deposition has increased in the West because of rapid increases in urbanization, population, distance driven, and large concentrated animal feeding operations. Studies of ecological effects suggest that emissions reductions are needed to protect sensitive ecosystem components. Deposition rates are unknown for most areas in the West, although reasonable estimates are available for sites in California, the Colorado Front Range, and central Arizona. National monitoring networks provide long-term wet deposition data and, more recently, estimated dry deposition data at remote sites. However, there is little information for many areas near emissions sources.


Ecological Applications | 2011

Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States

Linda H. Pardo; Mike E. Fenn; Christine L. Goodale; Linda H. Geiser; Charles T. Driscoll; Edith B. Allen; Jill S. Baron; Roland Bobbink; Williams D. Bowman; Christopher M. Clark; Bridget A. Emmett; Frank S. Gilliam; Tara L. Greaver; Sharon J. Hall; Erik A. Lilleskov; Lingli Liu; Jason A. Lynch; Knute J. Nadelhoffer; Steven S. Perakis; Molly J. Robin-Abbott; John L. Stoddard; Kathleen C. Weathers; Robin L. Dennis

Human activity in the last century has led to a significant increase in nitrogen (N) emissions and atmospheric deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the deposition of pollution that would be harmful to ecosystems is the determination of critical loads. A critical load is defined as the input of a pollutant below which no detrimental ecological effects occur over the long-term according to present knowledge. The objectives of this project were to synthesize current research relating atmospheric N deposition to effects on terrestrial and freshwater ecosystems in the United States, and to estimate associated empirical N critical loads. The receptors considered included freshwater diatoms, mycorrhizal fungi, lichens, bryophytes, herbaceous plants, shrubs, and trees. Ecosystem impacts included: (1) biogeochemical responses and (2) individual species, population, and community responses. Biogeochemical responses included increased N mineralization and nitrification (and N availability for plant and microbial uptake), increased gaseous N losses (ammonia volatilization, nitric and nitrous oxide from nitrification and denitrification), and increased N leaching. Individual species, population, and community responses included increased tissue N, physiological and nutrient imbalances, increased growth, altered root : shoot ratios, increased susceptibility to secondary stresses, altered fire regime, shifts in competitive interactions and community composition, changes in species richness and other measures of biodiversity, and increases in invasive species.


Journal of Environmental Management | 2010

Nitrogen critical loads and management alternatives for N-impacted ecosystems in California

Mark E. Fenn; Edith B. Allen; S.B. Weiss; Sarah E. Jovan; Linda H. Geiser; G.S. Tonnesen; R.F. Johnson; Leela E. Rao; B.S. Gimeno; Fengming Yuan; Thomas Meixner; Andrzej Bytnerowicz

Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km(2)) is estimated to be in excess of the N CL. Low CL values (3-8 kg N ha(-1) yr(-1)) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3-15% of the forested and chaparral land areas are estimated to be in exceedance of the NO(3)(-) leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha(-1) yr(-1). In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha(-1) yr(-1), and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha(-1) yr(-1). Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities.


Environmental Pollution | 2008

Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests

Mark E. Fenn; Sarah E. Jovan; F. Yuan; Linda H. Geiser; Thomas Meixner; B.S. Gimeno

Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO(3)(-) leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1 kg ha(-1) year(-1) is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO(3)(-)leaching were 17 kg N ha(-1) year(-1). DayCent estimated that elevated NO(3)(-) leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance.


Environmental Pollution | 2010

Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests, USA

Linda H. Geiser; Sarah Jovan; Doug A. Glavich; Matthew K. Porter

Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North Americas maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry, and total N deposition from the Communities Multi-Scale Air Quality model, and 3) ambient particulate N from Interagency Monitoring of Protected Visual Environments (IMPROVE). Sensitive species declines of 20-40% were associated with CLs of 1-4 and 3-9 kg N ha(-1)y(-1) in wet and total deposition. CLs increased with precipitation across the landscape, presumably from dilution or leaching of depositional N. Tight linear correlation between lichen and IMPROVE data suggests a simple screening tool for CL exceedance in US Class I areas. The total N model replicated several US and European lichen CLs and may therefore be helpful in estimating other temperate-forest lichen CLs.


Ecology | 2005

MODEL‐BASED STRATIFICATIONS FOR ENHANCING THE DETECTION OF RARE ECOLOGICAL EVENTS

Thomas C. Edwards; D. Richard Cutler; Niklaus E. Zimmermann; Linda H. Geiser; Jim Alegria

A common concern when designing surveys for rare species is ensuring sufficient detections for analytical purposes, such as estimating frequency on the landscape or modeling habitat relationships. Strict design-based approaches provide the least biased estimates but often result in low detection rates of rare species. Here, we demonstrate how model-based stratification can improve the probability of detecting five rare epiphytic macrolichens (Nephroma laevigatum, N. occultum, N. parile, Lobaria scrobiculataa, and Psuedocyphelaria rainierensis) in the Pacific Northwest. We constructed classification tree models for four more common lichens (L. oregana, L. pulmonaria, P. anomala, and P. anthraspis) that are associated with the rare species, then used the models to generate strata for sampling for the five lichen species considered rare. The classification tree models were developed using topographic and bio-climatic variables hypothesized to have direct relationships to the presence of the modeled lichen species. When the expected detection rates using the model-based stratification approach was tested on an independent data set, it resulted in two- to fivefold gains in detection compared to the observed detection rates for four of the five tested rare species.


Environmental Science & Technology | 2010

Sources and Deposition of Polycyclic Aromatic Hydrocarbons to Western U.S. National Parks

Sascha Usenko; Staci L. Massey Simonich; Kimberly J. Hageman; Jill Schrlau; Linda H. Geiser; Don H. Campbell; P. G. Appleby; Dixon H. Landers

Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) to determine their current and historical deposition, as well as to identify their potential sources. Seasonal snowpack was measured to determine the current wintertime atmospheric PAH deposition; lichens were measured to determine the long-term, year around deposition; and the temporal PAH deposition trends were reconstructed using lake sediment cores dated using (210)Pb and (137)Cs. The fourteen remote lake catchments ranged from low-latitude catchments (36.6 degrees N) at high elevation (2900 masl) in Sequoia National Park, CA to high-latitude catchments (68.4 degrees N) at low elevation (427 masl) in the Alaskan Arctic. Over 75% of the catchments demonstrated statistically significant temporal trends in SigmaPAH sediment flux, depending on catchment proximity to source regions and topographic barriers. The SigmaPAH concentrations and fluxes in seasonal snowpack, lichens, and surficial sediment were 3.6 to 60,000 times greater in the Snyder Lake catchment of Glacier National Park than the other 13 lake catchments. The PAH ratios measured in snow, lichen, and sediment were used to identify a local aluminum smelter as a major source of PAHs to the Snyder Lake catchment. These results suggest that topographic barriers influence the atmospheric transport and deposition of PAHs in high-elevation ecosystems and that PAH sources to these national park ecosystems range from local point sources to diffuse regional and global sources.


Environmental Science & Technology | 2010

The Western Airborne Contaminant Assessment Project (WACAP): An Interdisciplinary Evaluation of the Impacts of Airborne Contaminants in Western U.S. National Parks

Dixon H. Landers; Staci L. Massey Simonich; Daniel A. Jaffe; Linda H. Geiser; Donald H. Campbell; Adam R. Schwindt; Carl B. Schreck; Michael L. Kent; Will Hafner; Howard E. Taylor; Kimberly J. Hageman; Sascha Usenko; Luke K. Ackerman; Jill Schrlau; Neil L. Rose; Tamara Blett; Marilyn Morrison Erway

The National Park Service Organic Act of 1916 (1) required protection of the national parks for perpetuity by tasking the National Park Service (NPS) to maintain these lands “...unimpaired for the enjoyment of future generations.” Near the close of the last century, the NPS became aware of a new body of research describing a potential ecosystem threat that could not be ignored. Toxic airborne contaminants were increasingly being found in the world’s most pristine alpine and polar ecosystems, far from where such chemicals were produced or used, and the risks to the national parks of the western U.S. were unknown. Airborne contaminants present a broad range of potential risks to these ecosystems, largely due to bioaccumulation and or biomagnification of toxicants in biota, particularly vertebrates, that can result in loss of fecundity, unfit offspring, maladaptive behavior, and even death. As an outgrowth of these concerns, the Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 to determine the risk from airborne contaminants to ecosystems and food webs in national parks of the U.S. The specific objectives that guided design and implementation of WACAP were the following: 1. Determine if contaminants were present in western national parks. 2. If contaminants were present, determine in what way and where they were accumulating (geographically and by elevation). EP A Environ. Sci. Technol. 2010, 44, 855–859


Environmental Science & Technology | 2011

Comparison of Lichen, Conifer Needles, Passive Air Sampling Devices, and Snowpack as Passive Sampling Media to Measure Semi-Volatile Organic Compounds in Remote Atmospheres

Jill Schrlau; Linda H. Geiser; Kimberly J. Hageman; Dixon H. Landers; Staci L. Massey Simonich

A wide range of semivolatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, whereas PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log K(OA) values compared to the other media. Lichen accumulated more SOCs with log K(OA) > 10 relative to needles and showed a greater accumulation of particle-phase PAHs.


Ecological Applications | 2004

ASSESSING RARITY OF SPECIES WITH LOW DETECTABILITY: LICHENS IN PACIFIC NORTHWEST FORESTS

Thomas C. Edwards; D. Richard Cutler; Linda H. Geiser; Jim Alegria; Dan McKenzie

We show how simple statistical analyses of systematically collected inven- tory data can be used to provide reliable information about the distribution and habitat associations of rare species. Using an existing design-based sampling grid on which epi- phytic macrolichens had been inventoried in the Northwest Forest Plan area of the U.S. Pacific Northwest, we (1) estimate frequencies and standard errors for each of 25 lichen species having special management designation (i.e., Survey and Manage), (2) assess the probability that individual species were associated with specific land allocation and forest stand age classifications, and (3) provide estimates of sample sizes necessary to ensure sufficient detections for these analyses. We conclude with a discussion of management and conservation information needs that extant data can satisfy and identify advantages and limitations of random vs. nonrandom sampling strategies. Combining design-assisted and model-assisted approaches can overcome some of the limitations of either single strategy.

Collaboration


Dive into the Linda H. Geiser's collaboration.

Top Co-Authors

Avatar

Mark E. Fenn

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Edith B. Allen

University of California

View shared research outputs
Top Co-Authors

Avatar

Linda H. Pardo

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Andrzej Bytnerowicz

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Clark

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

E.A. Lilleskov

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Jill S. Baron

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Jovan

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge