Linda J. Metheny-Barlow
Wake Forest University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Linda J. Metheny-Barlow.
Cancer Research | 2010
Katherine L. Cook; Linda J. Metheny-Barlow; E. Ann Tallant; Patricia E. Gallagher
Angiotensin-(1-7) [Ang-(1-7)] is an endogenous 7-amino acid peptide hormone of the renin-angiotensin system that has antiproliferative properties. In this study, Ang-(1-7) inhibited the growth of cancer-associated fibroblasts (CAF) and reduced fibrosis in the tumor microenvironment. A marked decrease in tumor volume and weight was observed in orthotopic human breast tumors positive for the estrogen receptor (BT-474 or ZR-75-1) and HER2 (BT-474) following Ang-(1-7) administration to athymic mice. Ang-(1-7) concomitantly reduced interstitial fibrosis in association with a significant decrease in collagen I deposition, along with a similar reduction in perivascular fibrosis. In CAFs isolated from orthotopic breast tumors, the heptapeptide markedly attenuated in vitro growth as well as reduced fibronectin, transforming growth factor-β (TGF-β), and extracellular signal-regulated kinase 1/2 kinase activity. An associated increase in the mitogen-activated protein kinase (MAPK) phosphatase DUSP1 following treatment with Ang-(1-7) suggested a potential mechanism by which the heptapeptide reduced MAPK signaling. Consistent with these in vitro observations, immunohistochemical analysis of Ang-(1-7)-treated orthotopic breast tumors revealed reduced TGF-β and increased DUSP1. Together, our findings indicate that Ang-(1-7) targets the tumor microenvironment to inhibit CAF growth and tumor fibrosis.
Cancer Microenvironment | 2013
Keith D. Barlow; Anne M. Sanders; Shay Soker; Suleyman Ergun; Linda J. Metheny-Barlow
The induction of tumor vasculature, known as the ‘angiogenic switch’, is a rate-limiting step in tumor progression. Normal blood vessels are composed of two distinct cell types: endothelial cells which form the channel through which blood flows, and mural cells, the pericytes and smooth muscle cells which serve to support and stabilize the endothelium. Most functional studies have focused on the responses of endothelial cells to pro-angiogenic stimuli; however, there is mounting evidence that the supporting mural cells, particularly pericytes, may play key regulatory roles in both promoting vessel growth as well as terminating vessel growth to generate a mature, quiescent vasculature. Tumor vessels are characterized by numerous structural and functional abnormalities, including altered association between endothelial cells and pericytes. These dysfunctional, unstable vessels contribute to hypoxia, interstitial fluid pressure, and enhanced susceptibility to metastatic invasion. Increasing evidence points to the pericyte as a critical regulator of endothelial activation and subsequent vessel development, stability, and function. Here we discuss both the stimulatory and inhibitory effects of pericytes on the vasculature and the possible utilization of vessel normalization as a therapeutic strategy to combat cancer.
Radiation Research | 2014
Dana Greene-Schloesser; Valerie Payne; Ann M. Peiffer; Fang-Chi Hsu; David R. Riddle; Weiling Zhao; Michael D. Chan; Linda J. Metheny-Barlow; Mike E. Robbins
We hypothesized that dietary administration of the peroxisomal proliferator-activated receptor α agonist, fenofibrate, to young adult male rats would prevent the fractionated whole-brain irradiation (fWBI)-induced reduction in cognitive function and neurogenesis and prevent the fWBI-induced increase in the total number of activated microglia. Eighty 12–14-week-old young adult male Fischer 344 × Brown Norway rats received either: (1) sham irradiation, (2) 40 Gy of fWBI delivered as two 5 Gy fractions/week for 4 weeks, (3) sham irradiation + dietary fenofibrate (0.2% w/w) starting 7 days prior to irradiation, or (4) fWBI + fenofibrate. Cognitive function was measured 26–29 weeks after irradiation using: (1) the perirhinal cortex (PRh)-dependent novel object recognition task; (2) the hippocampal-dependent standard Morris water maze (MWM) task; (3) the hippocampal-dependent delayed match-to-place version of the MWM task; and (4) a cue strategy preference version of the MWM to distinguish hippocampal from striatal task performance. Neurogenesis was assessed 29 weeks after fWBI in the granular cell layer and subgranular zone of the dentate gyrus using a doublecortin antibody. Microglial activation was assessed using an ED1 antibody in the dentate gyrus and hilus of the hippocampus. A significant impairment in perirhinal cortex-dependent cognitive function was measured after fWBI. In contrast, fWBI failed to alter hippocampal-dependent cognitive function, despite a significant reduction in hippocampal neurogenesis. Continuous administration of fenofibrate prevented the fWBI-induced reduction in perirhinal cortex-dependent cognitive function, but did not prevent the radiation-induced reduction in neurogenesis or the radiation-induced increase in activated microglia. These data suggest that fenofibrate may be a promising therapeutic for the prevention of some modalities of radiation-induced cognitive impairment in brain cancer patients.
Free Radical Biology and Medicine | 2013
Elizabeth Moore; Mitra Kooshki; Linda J. Metheny-Barlow; Patricia E. Gallagher; Mike E. Robbins
About 500,000 new cancer patients will develop brain metastases in 2013. The primary treatment modality for these patients is partial or whole brain irradiation which leads to a progressive, irreversible cognitive impairment. Although the exact mechanisms behind this radiation-induced brain injury are unknown, neuroinflammation in glial populations is hypothesized to play a role. Blockers of the renin-angiotensin system (RAS) prevent radiation-induced cognitive impairment and modulate radiation-induced neuroinflammation. Recent studies suggest that RAS blockers may reduce inflammation by increasing endogenous concentrations of the anti-inflammatory heptapeptide angiotensin-(1-7) [Ang-(1-7)]. Ang-(1-7) binds to the AT(1-7) receptor and inhibits MAP kinase activity to prevent inflammation. This study describes the inflammatory response to radiation in astrocytes characterized by radiation-induced increases in (i) IL-1β and IL-6 gene expression; (ii) COX-2 and GFAP immunoreactivity; (iii) activation of AP-1 and NF-κB transcription factors; and (iv) PKCα, MEK, and ERK (MAP kinase) activation. Treatment with U-0126, a MEK inhibitor, demonstrates that this radiation-induced inflammation in astrocytes is mediated through the MAP kinase pathway. Ang-(1-7) inhibits radiation-induced inflammation, increases in PKCα, and MAP kinase pathway activation (phosphorylation of MEK and ERK). Additionally Ang-(1-7) treatment leads to an increase in dual specificity phosphatase 1 (DUSP1). Furthermore, treatment with sodium vanadate (Na3VO4), a phosphatase inhibitor, blocks Ang-(1-7) inhibition of radiation-induced inflammation and MAP kinase activation, suggesting that Ang-(1-7) alters phosphatase activity to inhibit radiation-induced inflammation. These data suggest that RAS blockers inhibit radiation-induced inflammation and prevent radiation-induced cognitive impairment not only by reducing Ang II but also by increasing Ang-(1-7) levels.
Journal of Cellular Biochemistry | 2012
Cara F. Buchanan; Christopher S. Szot; Tia D. Wilson; Steven A. Akman; Linda J. Metheny-Barlow; John L. Robertson; Joseph W. Freeman; Marissa Nichole Rylander
Reciprocal growth factor exchange between endothelial and malignant cells within the tumor microenvironment may directly stimulate neovascularization; however, the role of host vasculature in regulating tumor cell activity is not well understood. While previous studies have examined the angiogenic response of endothelial cells to tumor‐secreted factors, few have explored tumor response to endothelial cells. Using an in vitro co‐culture system, we investigated the influence of endothelial cells on the angiogenic phenotype of breast cancer cells. Specifically, VEGF, ANG1, and ANG2 gene and protein expression were assessed. When co‐cultured with microvascular endothelial cells (HMEC‐1), breast cancer cells (MDA‐MB‐231) significantly increased expression of ANG2 mRNA (20‐fold relative to MDA‐MB‐231 monoculture). Moreover, MDA‐MB‐231/HMEC‐1 co‐cultures produced significantly increased levels of ANG2 (up to 580 pg/ml) and VEGF protein (up to 38,400 pg/ml) while ANG1 protein expression was decreased relative to MDA‐MB‐231 monocultures. Thus, the ratio of ANG1:ANG2 protein, a critical indicator of neovascularization, shifted in favor of ANG2, a phenomenon known to correlate with vessel destabilization and sprouting in vivo. This angiogenic response was not observed in nonmalignant breast epithelial cells (MCF‐10A), where absolute protein levels of MCF‐10A/HMEC‐1 co‐cultures were an order of magnitude less than that of the MDA‐MB‐231/HMEC‐1 co‐cultures. Results were further verified with a functional angiogenesis assay demonstrating well‐defined microvascular endothelial cell (TIME) tube formation when cultured in media collected from MDA‐MB‐231/HMEC‐1 co‐cultures. This study demonstrates that the angiogenic activity of malignant mammary epithelial cells is significantly enhanced by the presence of endothelial cells. J. Cell. Biochem. 113: 1142–1151, 2012.
Cancer Research | 2016
Fei Xing; Yin Liu; Shanta Sharma; Kerui Wu; Chan; Hui-Wen Lo; Richard L. Carpenter; Linda J. Metheny-Barlow; Xiaobo Zhou; Shadi Qasem; Boris Pasche; Kounosuke Watabe
Brain metastasis is one of the chief causes of mortality in breast cancer patients, but the mechanisms that drive this process remain poorly understood. Here, we report that brain metastatic cells expressing high levels of c-Met promote the metastatic process via inflammatory cytokine upregulation and vascular reprogramming. Activated c-Met signaling promoted adhesion of tumor cells to brain endothelial cells and enhanced neovascularization by inducing the secretion of IL8 and CXCL1. Additionally, stimulation of IL1β secretion by activation of c-Met induced tumor-associated astrocytes to secrete the c-Met ligand HGF. Thus, a feed-forward mechanism of cytokine release initiated and sustained by c-Met fed a vicious cycle that generated a favorable microenvironment for metastatic cells. Reinforcing our results, we found that pterostilbene, a compound that penetrates the blood-brain barrier, could suppress brain metastasis by targeting c-Met signaling. These findings suggest a potential utility of this natural compound for chemoprevention. Cancer Res; 76(17); 4970-80. ©2016 AACR.
Journal of Breast Cancer | 2013
Andrew Vincent; Glenn J. Lesser; Doris R. Brown; Tamara Z. Vern-Gross; Linda J. Metheny-Barlow; Julia Lawrence; Michael Chan
Approximately 5% of breast cancer patients develop leptomeningeal metastases over the course of their disease. Though several treatments options are available for these patients, their prognosis is typically considered to be poor. We report a case of leptomeningeal failure after a patient underwent prior radiotherapy, radiosurgery, surgery, chemotherapy, and biologic therapy. This patient experienced a prolonged response after receiving bevacizumab and capecitabine. The literature currently contains several reports regarding the use of systemic therapy to manage leptomeningeal metastases from breast cancer, which we summarize. Finally, we review the relevant effects of the patients treatment modalities and provide a rationale for the mechanism that led to her prolonged response.
Frontiers in Bioscience | 2016
Sherona R. Sirkisoon; Richard L. Carpenter; Tadas Rimkus; Lance D. Miller; Linda J. Metheny-Barlow; Hui-Wen Lo
Breast cancer occurs in approximately 1 in 8 women and 1 in 37 women with breast cancer succumbed to the disease. Over the past decades, new diagnostic tools and treatments have substantially improved the prognosis of women with local diseases. However, women with metastatic disease still have a dismal prognosis without effective treatments. Among different molecular subtypes of breast cancer, the HER2-enriched and basal-like subtypes typically have higher rates of metastasis to the brain. Basal-like metastatic breast tumors frequently express EGFR. Consequently, HER2- and EGFR-targeted therapies are being used in the clinic and/or evaluated in clinical trials for treating breast cancer patients with brain metastases. In this review, we will first provide an overview of the HER2 and EGFR signaling pathways. The roles that EGFR and HER2 play in breast cancer metastasis to the brain will then be discussed. Finally, we will summarize the preclinical and clinical effects of EGFR- and HER2-targeted therapies on breast cancer metastasis.
International Journal of Radiation Biology | 2014
Dana Greene-Schloesser; Mitra Kooshki; Valerie Payne; Ralph B. D’Agostino; Kenneth T. Wheeler; Linda J. Metheny-Barlow; Mike E. Robbins
Abstract Purpose: To determine if the brains response to single doses predicts its response to ‘biologically equivalent’ fractionated doses. Methods: Young adult male Fischer 344 rats were whole-brain irradiated with either single 11, 14, or 16.5 Gy doses of 137Cs γ rays or their ‘biologically equivalent’ 20, 30, or 40 Gy fractionated doses (fWBI) delivered in 5 Gy fractions, twice/week for 2, 3, or 4 weeks, respectively. At 2 months post-irradiation, cellular markers of inflammation (total, activated, and newborn microglia) and neurogenesis (newborn neurons) were measured in 40 μm sections of the dentate gyrus (DG). Results: Although the total number of microglia in the DG/hilus was not significantly different (p > 0.7) in unirradiated, single dose, and fWBI rats, single doses produced a significant (p < 0.003) increase in the percent-activated microglia; fWBI did not (p > 0.1). Additionally, single doses produced a significant (p < 0.002) dose-dependent increase in surviving newborn microglia; fWBI did not (p < 0.8). Although total proliferation in the DG was reduced equally by single and fWBI doses, single doses produced a significant dose-dependent (p < 0.02) decrease in surviving newborn neurons; fWBI did not (p > 0.6). Conclusions: These data demonstrate that the rat brains cellular response to single doses often does not predict its cellular response to ‘biologically equivalent’ fWBI doses.
Radiation Research | 2014
Elizabeth Moore; Mitra Kooshki; Kenneth T. Wheeler; Linda J. Metheny-Barlow; Mike E. Robbins
Fractionated partial or whole-brain irradiation is the primary treatment for metastatic brain tumors. Despite reducing tumor burden and increasing lifespan, progressive, irreversible cognitive impairment occurs in >50% of the patients who survive >6 months after fractionated whole-brain irradiation. The exact mechanism(s) responsible for this radiation-induced brain injury are unknown; however, preclinical studies suggest that radiation modulates the extracellular receptor kinase signaling pathway, which is associated with cognitive impairment in many neurological diseases. In the study reported here, we demonstrated that the extracellular receptor kinase transcriptionally-regulated early response gene, Homer1a, was up-regulated transiently in the hippocampus and down-regulated in the cortex of young adult male Fischer 344 X Brown Norway rats at 48 h after 40 Gy of fractionated whole-brain irradiation. Two months after fractionated whole-brain irradiation, these changes in Homer1a expression correlated with a down-regulation of the hippocampal glutamate receptor 1 and protein kinase Cγ, and an up-regulation of cortical glutamate receptor 1 and protein kinase Cγ. Two drugs that prevent radiation-induced cognitive impairment in rats, the angiotensin type-1 receptor blocker, L-158,809, and the angiotensin converting enzyme inhibitor, ramipril, reversed the fractionated whole-brain irradiation-induced Homer1a expression at 48 h in the hippocampus and cortex and restored glutamate receptor 1 and protein kinase Cγ to the levels in sham-irradiated controls at 2 months after fractionated whole-brain irradiation. These data indicate that Homer1a is, (1) a brain region specific regulator of radiation-induced brain injury, including cognitive impairment and (2) potentially a druggable target for preventing it.