Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda J. Mullins is active.

Publication


Featured researches published by Linda J. Mullins.


Nature Genetics | 2008

Progress and prospects in rat genetics: a community view

Timothy J. Aitman; John K. Critser; Edwin Cuppen; Anna F. Dominiczak; Xosé M. Fernández-Suárez; Jonathan Flint; Dominique Gauguier; Aron M. Geurts; Michael N. Gould; Peter C. Harris; Rikard Holmdahl; Norbert Hubner; Zsuzsanna Izsvák; Howard J. Jacob; Takashi Kuramoto; Anne E. Kwitek; Anna Marrone; Tomoji Mashimo; Carol Moreno; John J. Mullins; Linda J. Mullins; Tomas Olsson; Michal Pravenec; Lela K. Riley; Kathrin Saar; Tadao Serikawa; James D Shull; Claude Szpirer; Simon N. Twigger; Birger Voigt

The rat is an important system for modeling human disease. Four years ago, the rich 150-year history of rat research was transformed by the sequencing of the rat genome, ushering in an era of exceptional opportunity for identifying genes and pathways underlying disease phenotypes. Genome-wide association studies in human populations have recently provided a direct approach for finding robust genetic associations in common diseases, but identifying the precise genes and their mechanisms of action remains problematic. In the context of significant progress in rat genomic resources over the past decade, we outline achievements in rat gene discovery to date, show how these findings have been translated to human disease, and document an increasing pace of discovery of new disease genes, pathways and mechanisms. Finally, we present a set of principles that justify continuing and strengthening genetic studies in the rat model, and further development of genomic infrastructure for rat research.


The FASEB Journal | 1999

Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization

Bert Binas; Heike Danneberg; Jim McWhir; Linda J. Mullins; A. John Clark

Nonenzymatic cytosolic fatty acid binding proteins (FABPs) are abundantly expressed in many animal tissues with high rates of fatty acid metabolism. No physiological role has been demonstrated for any FABP, although these proteins have been implicated in transport of free long‐chain fatty acids (LCFAs) and protection against LCFA toxicity. We report here that mice lacking heart‐type FABP (H‐FABP) exhibit a severe defect of peripheral (non‐hepatic, non‐fat) LCFA utilization. In these mice, the heart is unable to efficiently take up plasma LCFAs, which are normally its main fuel, and switches to glucose usage. Altered plasma levels of LCFAs, glucose, lactate and β‐hydroxybutyrate are consistent with depressed peripheral LCFA utilization, intensified carbohydrate usage, and increased hepatic LCFA oxidation; these changes are most pronounced under conditions favoring LCFA oxidation. H‐FABP deficiency is only incompletely compensated, however, causing acute exercise intolerance and, at old age, a localized cardiac hypertrophy. These data establish a requirement for H‐FABP in cardiac intracellular lipid transport and fuel selection and a major role in metabolic homeostasis. This new animal model should be particularly useful for investigating the significance of peripheral LCFA utilization for heart function, insulin sensitivity, and blood pressure.—Binas, B., Danneberg, H., McWhir, J., Mullins, L., Clark, A. J. Requirement for the heart‐type fatty acid binding protein in cardiac fatty acid utilization. FASEB J. 13, 805–812 (1999)


Hypertension | 1993

Transgenesis in nonmurine species.

John J. Mullins; Linda J. Mullins

Although the mouse remains the species of choice for most transgenic experimentation, it may be preferable or even necessary to use alternative species for certain applications. We review the strategies by which transgenic technology has been applied to other animals, specifically, the rat, rabbit, pig, sheep, goat, and cow. Additionally, we outline the potential applications of alternative transgenic species with reference to the field of hypertension and cardiovascular research.


Nucleic Acids Research | 2007

Cryptic loxP sites in mammalian genomes: Genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques

Sabrina Semprini; T J Troup; N Kotelevtseva; Kenneth King; John M. Davis; Linda J. Mullins; Karen E. Chapman; Donald R. Dunbar; John J. Mullins

Cre is widely used for DNA tailoring and, in combination with recombineering techniques, to modify BAC/PAC sequences for generating transgenic animals. However, mammalian genomes contain recombinase recognition sites (cryptic loxP sites) that can promote illegitimate DNA recombination and damage when cells express the Cre recombinase gene. We have created a new bioinformatic tool, FuzznucComparator, which searches for cryptic loxP sites and we have applied it to the analysis of the whole mouse genome. We found that cryptic loxP sites occur frequently and are homogeneously distributed in the genome. Given the mammalian nature of BAC/PAC genomic inserts, we hypothesised that the presence of cryptic loxP sites may affect the ability to grow and modify BAC and PAC clones in E. coli expressing Cre recombinase. We have observed a defect in bacterial growth when some BACs and PACs were transformed into EL350, a DH10B-derived bacterial strain that expresses Cre recombinase under the control of an arabinose-inducible promoter. In this study, we have demonstrated that Cre recombinase expression is leaky in un-induced EL350 cells and that some BAC/PAC sequences contain cryptic loxP sites, which are active and mediate the introduction of single-strand nicks in BAC/PAC genomic inserts.


Genomics | 1988

Multilocus molecular mapping of the mouse X chromosome.

Linda J. Mullins; Stephen G. Grant; Dennis A. Stephenson; Verne M. Chapman

Using restriction fragment length polymorphisms (RFLPs) and enzymatic variants between distantly related mouse species, we have assigned three genes to the mouse X chromosome and concurrently mapped a total of eight genes spanning an estimated 50 cM of the chromosome. Segregation of RFLPs in over 200 male progeny from interspecies backcrosses between the inbred strain C57BL/6JRos and either wild-derived Mus musculus or Mus spretus was followed for the murine genes Timp (tissue inhibitor of metalloproteinases), Cf-8 (coagulation factor VIII), and Rsvp (red-sensitive visual pigment) and the known X-linked markers Otc, Hprt, Cf-9, G6pd, and Ags. From the centromere, the gene order was defined as Otc, Timp, Hprt, Cf-9, (Cf-8/Rsvp/G6pd), Ags, by minimizing the number of multiple recombinational events. No significant differences in map order or frequency of recombination were observed between the two backcross series studied. The use of Southern analysis has allowed us to add new genes to the map in a cumulative manner, and as probes become available, additional markers can be mapped, using the same set of mice, by utilizing existing blots or resampling the DNAs. The use of probes for functional genes has allowed us to directly compare the X chromosomes of mouse and man and has provided insight into chromosomal rearrangements which have occurred during the evolutionary divergence of these species, as well as to define the extent of linkage homologies.


The Journal of Physiology | 2004

Nuclear transfer in rodents

Linda J. Mullins; Ian Wilmut; John J. Mullins

Cloning is the asexual reproduction of an individual, such that the offspring have an essentially identical nuclear genome. Nuclear transfer and cloning have been achieved in a number of species, namely sheep, cows, goats, rabbits, cats and mice, but have been largely unsuccessful, so far, in dogs, primates and rats. Clearly, contributory factors which affect the outcome of successful cloning experiments are not universally applicable to all species. One theme common to all cloning experiments, however, is the overall inefficiency of the process, typically 0–4%. A number of factors contribute to nuclear transfer inefficiency, and we will review mouse cloning experiments, which address these problems, highlighting the importance of donor nucleus choice (somatic or ES cell, fetal or adult, quiescent or actively dividing). Finally, we will summarize the emerging principles which appear to govern nuclear reprogramming and production of clones, and will consider the application of nuclear transfer to the rat.


Genomics | 1990

Efficient linkage of 10 loci in the proximal region of the mouse X chromosome.

Linda J. Mullins; Dennis A. Stephenson; Stephen G. Grant; Verne M. Chapman

Interspecific Mus species crosses were used to construct a multilocus genetic map of the mouse X chromosome that extends for more than 50 cM. In these studies, we established the segregation of eight loci in more than 200 backcross progeny from crosses of M. musculus and M. spretus with a common inbred strain (C57BL/6JRos). Genetic divergence at the level of the nucleotide sequences makes these crosses a useful cumulative genetic resource for mapping additional genes defined by genomic or cDNA probes in a highly efficient manner. We have therefore devised a mapping strategy that uses a subset of these backcrosses that are recombinant between successive anchor loci to both localize and order an additional set of six genes without necessarily resorting to an analysis of the entire backcross series. Using this approach, we have defined the linkage of cytochrome b245 beta-chain (Cybb), synapsin (Syn-1), and two members of the X-linked lymphocyte-regulated gene family (Xlr-1, Xlr-2), as well as DXSmh141 and DXSmh172, two loci defined by random genomic probes. All six loci have been localized to the proximal portion of the mouse X chromosome and their order has been defined as Cybb, Otc, Syn-1/Timp, DXSmh141/Xlr-1, DXSmh172, Hprt, Xlr-2, Cf-9. Gene order was established by minimizing multiple recombination events across the region spanning an estimated 20 cM of the proximal X chromosome. The possible significance of the Xlr loci is discussed with respect to other X-chromosome loci that regulate the immune response.


Journal of Biological Chemistry | 2009

Cyp11b1 Null Mouse, a Model of Congenital Adrenal Hyperplasia

Linda J. Mullins; Audrey Peter; Nicola Wrobel; Judith McNeilly; Alan S. McNeilly; Emad A S Al-Dujaili; David Brownstein; John J. Mullins; Christopher J. Kenyon

Patients with congenital adrenal hyperplasia arising from mutations of 11β-hydroxylase, the final enzyme in the glucocorticoid biosynthetic pathway, exhibit glucocorticoid deficiency, adrenal hyperplasia driven by unsuppressed hypothalamo-pituitary-adrenal activity, and excess mineralocorticoid activity caused by the accumulation of deoxycorticosterone. A mouse model, in which exons 3-7 of Cyp11b1 (the gene encoding 11β-hydroxylase) were replaced with cDNA encoding enhanced cyan fluorescent protein, was generated to investigate the underlying disease mechanisms. Enhanced cyan fluorescent protein was expressed appropriately in the zona fasciculata of the adrenal gland, and targeted knock-out was confirmed by urinary steroid profiles and, immunocytochemically, by the absence of 11β-hydroxylase. The null mice exhibited glucocorticoid deficiency, mineralocorticoid excess, adrenal hyperplasia, mild hypertension, and hypokalemia. They also displayed glucose intolerance. Because rodents do not synthesize adrenal androgens, changes in reproductive function such as genital virilization of females were not anticipated. However, adult homozygote females were infertile, their ovaries showing an absence of corpora lutea and a central proliferation of disorganized steroidogenic tissue. Null females responded normally to superovulation, suggesting that raised systemic progesterone levels also contribute to infertility problems. The model reveals previously unrecognized phenotypic subtleties of congenital adrenal hyperplasia.


Steroids | 2009

Development of a highly sensitive ELISA for aldosterone in mouse urine: Validation in physiological and pathophysiological states of aldosterone excess and depletion

Emad A S Al-Dujaili; Linda J. Mullins; Matthew A. Bailey; Christopher J. Kenyon

BACKGROUND Clinical studies have established aldosterone as a critical physiological and pathophysiological factor in salt and water homeostasis, blood pressure control and in heart failure. Genetic and physiological studies of mice are used to model these processes. A sensitive and specific assay for aldosterone is therefore needed to monitor adrenocortical activity in murine studies of renal function and cardiovascular diseases. METHODS Antibodies against aldosterone were raised in sheep as previously described. HRP-Donkey-anti-sheep IgG enzyme tracer was produced in our laboratory using the Lightning-Link HRP technique. Aldosterone ELISA protocol was validated and optimised to achieve the best sensitivity. The assay was validated by analysing the urine of mice collected under various experimental conditions designed to stimulate or suppress aldosterone in the presence of other potentially interfering steroid hormones. RESULTS Cross-reactivity with the steroids most likely to interfere was minimal: corticosterone=0.0028%, cortisol=0.0006%, DOC=0.0048% except for 5alpha-dihydro-aldosterone=1.65%. Minimum detection limit of this ELISA was 5.2 pmole/L (1.5 pg/mL). The validity of urinary aldosterone ELISA was confirmed by the excellent correlation between results obtained before and after solvent extraction and HPLC separation step (Y=1.092X+0.03, R(2)=0.995, n=54). Accuracy studies, parallelism and imprecision data were determined and all found to be satisfactory. Using this assay, mean urinary aldosterone levels were (i) approximately 60-fold higher in females than males mice; (ii) increased 6-fold by dietary sodium restriction; (iii) increased 10-fold by ACTH infusion and (iv) reduced by >60% in Cyp11b1 null mice. CONCLUSION We describe an ELISA for urinary aldosterone that is suitable for repeated non-invasive measurements in mice. Female aldosterone levels are higher than males. Unlike humans, most aldosterone in mouse urine is not conjugated. Increased levels were noted in response to dietary sodium restriction and ACTH treatment. The sensitivity of the assay is sufficient to detect suppressed levels in mouse models of congenital adrenal hyperplasia.


Steroids | 2009

Physiological and pathophysiological applications of sensitive ELISA methods for urinary deoxycorticosterone and corticosterone in rodents

Emad A S Al-Dujaili; Linda J. Mullins; Matthew A. Bailey; Ruth Andrew; Christopher J. Kenyon

Deoxycorticosterone (DOC: a weak mineralocorticoid) is the precursor to corticosterone (B: the major glucocorticoid in rodents) and aldosterone (the major mineralocorticoid). The genes Cyp11b1 and Cyp11b2 that encode the enzymes responsible for DOC to B (11beta-hydroxylase) and DOC to aldosterone (aldosterone synthase) conversions are located on the same chromosome. The aim of this study was to develop sensitive and specific ELISA methods to quantify urinary DOC and B concentrations to assess the physiological and genetic control of the Cyp11b1/b2 locus. Antibodies raised in rabbits against DOC and B and horse radish peroxidase-goat anti-rabbit IgG enzyme tracer were used to develop the assays. Urine samples collected from mice held in metabolic cages were extracted with dichloromethane and reconstituted in assay buffer. The assays were validated for specificity, sensitivity, parallelism, accuracy and imprecision. Cross-reactivities with major interfering steroids were minimal: DOC assay (progesterone=0.735% and corticosterone=0.045%), and for B assay (aldosterone=0.14%, 11-dehydro-B=0.006%, cortisol=0.016% and DOC=0.04%) and minimum detection limit for DOC ELISA was 2.2 pg/mL (6.6 pmol/L), and for B ELISA was 6.2 pg/mL (17.9 pmol/L). The validity of urinary DOC and B ELISAs was confirmed by the excellent correlation between the results obtained before and after solvent extraction and HPLC (DOC ELISA: Y=1.092X-0.054, R(2)=0.988; B ELISA: Y=1.047X-0.226, R(2)=0.996). Accuracy studies, parallelism and imprecision data were determined and all found to be satisfactory. The methods were used in a series of metabolic cage studies which demonstrated that (i) females produce more DOC and corticosterone than males; (ii) DOC and corticosterone respond to ACTH treatment but not dietary sodium restriction; (iii) DOC:B ratios in Cyp11b1 null mice were >200-fold greater than wild type.

Collaboration


Dive into the Linda J. Mullins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Diaz

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis A. Stephenson

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge