Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda J. Pike is active.

Publication


Featured researches published by Linda J. Pike.


Journal of Lipid Research | 2006

Rafts defined: a report on the Keystone symposium on lipid rafts and cell function

Linda J. Pike

The recent Keystone Symposium on Lipid Rafts and Cell Function (March 23–28, 2006 in Steamboat Springs, CO) brought together biophysicists, biochemists, and cell biologists to discuss the structure and function of lipid rafts. What emerged from the meeting was a consensus definition of a membrane raft: “Membrane rafts are small (10–200 nm), heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Small rafts can sometimes be stabilized to form larger platforms through protein-protein and protein-lipid interactions.” This definition helps to clarify current thinking in a field that has been plagued by the heterogeneous and sometimes ephemeral nature of its subject.


Journal of Lipid Research | 2003

Lipid rafts: bringing order to chaos

Linda J. Pike

Lipid rafts are subdomains of the plasma membrane that contain high concentrations of cholesterol and glycosphingolipids. They exist as distinct liquid-ordered regions of the membrane that are resistant to extraction with nonionic detergents. Rafts appear to be small in size, but may constitute a relatively large fraction of the plasma membrane. While rafts have a distinctive protein and lipid composition, all rafts do not appear to be identical in terms of either the proteins or the lipids that they contain. A variety of proteins, especially those involved in cell signaling, have been shown to partition into lipid rafts. As a result, lipid rafts are thought to be involved in the regulation of signal transduction. Experimental evidence suggests that there are probably several different mechanisms through which rafts control cell signaling. For example, rafts may contain incomplete signaling pathways that are activated when a receptor or other required molecule is recruited into the raft. Rafts may also be important in limiting signaling, either by physical sequestration of signaling components to block nonspecific interactions, or by suppressing the intrinsic activity of signaling proteins present within rafts. This review provides an overview of the physical characteristics of lipid rafts and summarizes studies that have helped to elucidate the role of lipid rafts in signaling via receptor tyrosine kinases and G protein-coupled receptors.


Biochemical Journal | 2004

Lipid rafts: heterogeneity on the high seas

Linda J. Pike

Lipid rafts are membrane microdomains that are enriched in cholesterol and glycosphingolipids. They have been implicated in processes as diverse as signal transduction, endocytosis and cholesterol trafficking. Recent evidence suggests that this diversity of function is accompanied by a diversity in the composition of lipid rafts. The rafts in cells appear to be heterogeneous both in terms of their protein and their lipid content, and can be localized to different regions of the cell. This review summarizes the data supporting the concept of heterogeneity among lipid rafts and outlines the evidence for cross-talk between raft components. Based on differences in the ways in which proteins interact with rafts, the Induced-Fit Model of Raft Heterogeneity is proposed to explain the establishment and maintenance of heterogeneity within raft populations.


Journal of Lipid Research | 2009

The challenge of lipid rafts

Linda J. Pike

The Singer-Nicholson model of membranes postulated a uniform lipid bilayer randomly studded with floating proteins. However, it became clear almost immediately that membranes were not uniform and that clusters of lipids in a more ordered state existed within the generally disorder lipid milieu of the membrane. These clusters of ordered lipids are now referred to as lipid rafts. This review summarizes current thinking on the nature of lipid rafts focusing on the role of proteomics and lipidomics in understanding the structure of these domains. It also outlines the contribution of single-molecule methods in defining the forces that drive the formation and dynamics of these membrane domains.


Journal of Biological Chemistry | 1998

Cholesterol Depletion Delocalizes Phosphatidylinositol Bisphosphate and Inhibits Hormone-stimulated Phosphatidylinositol Turnover

Linda J. Pike; Joanne M. Miller

Caveolae and detergent-insoluble, glycosphingolipid-enriched domains (DIGs) are cholesterol-enriched membrane domains that have been implicated in signal transduction because a variety of signaling proteins as well as phosphatidylinositol bisphosphate (PtdInsP2) are compartmentalized in these domains. We report here that depletion of cellular cholesterol leads to the inhibition of epidermal growth factor- and bradykinin-stimulated PtdIns turnover in A431 cells. This is associated with the loss of compartmentalization of epidermal growth factor receptors, Gq, and PtdInsP2 in the low density membrane domains. Replacement of cellular cholesterol leads to the reorganization of signaling molecules in the low density domains and the reestablishment of hormone-stimulated PtdIns hydrolysis. Oxysterol derivatives show a variable ability to functionally replace the cholesterol in this system. These data are consistent with the hypothesis that localization of signaling proteins and lipids to cholesterol-enriched domains is required for the proper function of hormone-stimulated PtdIns turnover.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Heterogeneity in EGF-binding affinities arises from negative cooperativity in an aggregating system.

Jennifer L. Macdonald; Linda J. Pike

Scatchard analysis of the binding of EGF to its receptor yields concave up plots that indicate the presence of two classes of binding sites. However, how two independent classes of sites arise from the expression of a single EGF receptor protein has never been adequately explained. Using a new analytical approach involving the simultaneous fitting of binding isotherms from cells expressing increasing levels of EGF receptors, we show that 125I-EGF-binding data can be completely explained by a model involving negative cooperativity in an aggregating system. This approach provides an experimentally determined value for the monomer–dimer equilibrium constant, which, for wild-type EGF receptors, corresponds to ≈50,000 receptors per cell. Therefore, changes in receptor expression within the physiological range can modulate the outcome of a signaling stimulus. Analysis of the L680N-EGF receptor mutant, in which the formation of asymmetric kinase domain dimers is blocked, indicates that the kinase dimers make a substantial energetic contribution to the ligand-independent association of EGF receptor monomers, but are not necessary for negative cooperativity. The model accurately predicts the behavior of receptor mutants, such as the dimerization-defective Y246D-EGF receptor, which exhibit a single class of binding sites and provides a framework for understanding secondary dimer formation and lateral signaling in the EGF receptor family.


Journal of Biological Chemistry | 2003

Cholesterol Depletion Results in Site-specific Increases in Epidermal Growth Factor Receptor Phosphorylation due to Membrane Level Effects STUDIES WITH CHOLESTEROL ENANTIOMERS

Emily J. Westover; Douglas F. Covey; Howard L. Brockman; Rhoderick E. Brown; Linda J. Pike

In A431 cells, depletion of cholesterol with methyl-β-cyclodextrin induced an increase in both basal and epidermal growth factor (EGF)-stimulated EGF receptor phosphorylation. This increase in phosphorylation was site-specific, with significant increases occurring at Tyr845, Tyr992, and Tyr1173, but only minor changes at Tyr1045 and Tyr1068. The elevated level of receptor phosphorylation was associated with an increase in the intrinsic kinase activity of the EGF receptor kinase, possibly as a result of the cyclodextrin-induced enhancement of the phosphorylation of Tyr845, a site in the kinase activation loop known to be phosphorylated by pp60src. Cholesterol and its enantiomer (ent-cholesterol) were used to investigate the molecular basis for the modulation of EGF receptor function by cholesterol. Natural cholesterol (nat-cholesterol) was oxidized substantially more rapidly than ent-cholesterol by cholesterol oxidase, a protein that contains a specific binding site for the sterol. By contrast, the ability of nat- and ent-cholesterol to interact with sphingomyelins and phosphatidylcholine and to induce lipid condensation in a monolayer system was the same. These data suggest that, whereas cholesterol-protein interactions may be sensitive to the absolute configuration of the sterol, sterol-lipid interactions are not. nat- and ent-cholesterol were tested for their ability to physically reconstitute lipid rafts following depletion of cholesterol. nat- and ent-cholesterol reversed to the same extent the enhanced phosphorylation of the EGF receptor that occurred following removal of cholesterol. Furthermore, the enantiomers showed similar abilities to reconstitute lipid rafts in cyclodextrin-treated cells. These data suggest that cholesterol most likely affects EGF receptor function because of its physical effects on membrane properties, not through direct enantioselective interactions with the receptor.


Journal of Biological Chemistry | 2009

The Intracellular Juxtamembrane Domain of the Epidermal Growth Factor (EGF) Receptor Is Responsible for the Allosteric Regulation of EGF Binding

Jennifer L. Macdonald-Obermann; Linda J. Pike

We have previously shown that the binding of epidermal growth factor (EGF) to its receptor can best be described by a model that involves negative cooperativity in an aggregating system (Macdonald, J. L., and Pike, L. J. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 112–117). However, despite the fact that biochemical analyses indicate that EGF induces dimerization of its receptor, the binding data provided no evidence for positive linkage between EGF binding and dimer assembly. By analyzing the binding of EGF to a number of receptor mutants, we now report that in naive, unphosphorylated EGF receptors, ligand binding is positively linked to receptor dimerization but the linkage is abolished upon autophosphorylation of the receptor. Both phosphorylated and unphosphorylated EGF receptors exhibit negative cooperativity, indicating that mechanistically, cooperativity is distinct from the phenomenon of linkage. Nonetheless, both the positive linkage and the negative cooperativity observed in EGF binding require the presence of the intracellular juxtamembrane domain. This indicates the existence of inside-out signaling in the EGF receptor system. The intracellular juxtamembrane domain has previously been shown to be required for the activation of the EGF receptor tyrosine kinase (Thiel, K. W., and Carpenter, G. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 19238–19243). Our experiments expand the role of this domain to include the allosteric control of ligand binding by the extracellular domain.


The Journal of Nuclear Medicine | 2008

Correlating EGFR Expression with Receptor-Binding Properties and Internalization of 64Cu-DOTA-Cetuximab in 5 Cervical Cancer Cell Lines

Martin Eiblmaier; Laura A. Meyer; Mark A. Watson; Paula M. Fracasso; Linda J. Pike; Carolyn J. Anderson

The anti–epidermal growth factor receptor (anti-EGFR) antibody cetuximab is clinically approved for the treatment of EGFR-expressing metastatic colorectal cancer and advanced head and neck cancer. Overexpression of EGFR has also been found in more than 70% of carcinomas of the cervix. The overall goal of this study was to determine whether 64Cu-1,4,7,10-tetraazacyclododecane-N,N′,N″,N′″-tetraacetic acid (DOTA)-cetuximab has potential as an agent for measuring EGFR concentration by PET imaging in cervical cancer tumors. Methods: Cetuximab was conjugated to the bifunctional chelator DOTA and labeled with 64Cu. EGFR messenger RNA (mRNA) expression was correlated with EGFR densities on the cell surface of 5 different cervical cancer cell lines and with receptor function, measured by internalization of 64Cu-DOTA-cetuximab. Imaging in tumor-bearing mice with small-animal PET was performed using the highest-expressing cervical cancer cell line. Results: The affinity of 64Cu-DOTA-cetuximab binding for the EGFR was similar in 4 EGFR-positive lines, varying from 0.1 to 0.7 nM. The mRNA expression corresponded well with EGFR densities and levels of internalization, with responses decreasing in the order of CaSki > ME-180 > DoTc2 4510 > HeLa > C-33A. Biodistribution and small-animal PET studies with 64Cu-DOTA-cetuximab in CaSki tumor-bearing nude mice showed relatively high tumor uptake at 24 h after injection (13.2 ± 1.2 percentage of injected activity per gram), although there was also significant retention of activity in the blood and liver accumulation. Conclusion: 64Cu-DOTA-cetuximab was successfully used to detect and quantify EGFR expression in cervical cancer tumors, and small-animal PET/CT of EGFR-expressing CaSki tumors suggests potential for PET/CT of EGFR-positive tumors.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mechanics of EGF Receptor/ErbB2 kinase activation revealed by luciferase fragment complementation imaging

Jennifer L. Macdonald-Obermann; David Piwnica-Worms; Linda J. Pike

Binding of EGF to its receptor induces dimerization of the normally monomeric receptor. Activation of its intracellular tyrosine kinase then occurs through the formation of an asymmetric kinase dimer in which one subunit, termed the “receiver” kinase, is activated by interaction with the other subunit, termed the “activator” kinase [Zhang, et al. (2006) Cell 125: 1137–1149]. Although there is significant experimental support for this model, the relationship between ligand binding and the mechanics of kinase activation are not known. Here we use luciferase fragment complementation in EGF receptor (EGFR)/ErbB2 heterodimers to probe the mechanics of ErbB kinase activation. Our data support a model in which ligand binding causes the cis-kinase (the EGFR) to adopt the receiver position in the asymmetric dimer and to be activated first. If the EGF receptor is kinase active, this results in the phosphorylation of the trans-kinase (ErbB2). However, if the EGF receptor kinase is kinase dead, the ErbB2 kinase is never activated. Thus, activation of the kinases in the EGFR/ErbB2 asymmetric dimer occurs in a specific sequence and depends on the kinase activity of the EGF receptor.

Collaboration


Dive into the Linda J. Pike's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin G. Krebs

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Piwnica-Worms

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dhandapani Kuppuswamy

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J E Casnellie

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Duncan H. Walker

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sangeeta Adak

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Macdonald

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge