Linda J. Pinto
Simon Fraser University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Linda J. Pinto.
Journal of Applied Microbiology | 2006
L.F. Del Rio; A.K.M. Hadwin; Linda J. Pinto; M.D. MacKinnon; Margo M. Moore
Aims: Naphthenic acids (NAs) are naturally occurring, linear and cyclic carboxylic surfactants associated with the acidic fraction of petroleum. NAs account for most of the acute aquatic toxicity of oil sands process‐affected water (OSPW). The toxicity of OSPW can be reduced by microbial degradation. The aim of this research was to determine the extent of NA degradation by sediment microbial communities exposed to varying amounts of OSPW.
Infection and Immunity | 2004
A. H. T. Hissen; J. M. T. Chow; Linda J. Pinto; Margo M. Moore
ABSTRACT Aspergillus fumigatus is a filamentous fungus which can cause invasive disease in immunocompromised individuals. A. fumigatus can grow in medium containing up to 80% human serum, despite very low concentrations of free iron. The purpose of this study was to determine the mechanism by which A. fumigatus obtains iron from the serum iron-binding protein transferrin. In iron-depleted minimal essential medium (MEM), A. fumigatus growth was supported by the addition of holotransferrin (holoTf) or FeCl3 but not by the addition of apotransferrin (apoTf). Proteolytic degradation of transferrin by A. fumigatus occurred in MEM-serum; however, transferrin degradation did not occur until late logarithmic phase. Moreover, transferrin was not degraded by A. fumigatus incubated in MEM-holoTf. Urea polyacrylamide gel electrophoresis showed that in MEM-holoTf, holoTf was completely converted to apoTf by A. fumigatus. In human serum, all of the monoferric transferrin was converted to apoTf within 8 h. Siderophores were secreted by A. fumigatus after 8 h of growth in MEM-serum and 12 h in MEM-holoTf. The involvement of small molecules in iron acquisition was confirmed by the fact that transferrin was deferrated by A. fumigatus even when physically separated by a 12-kDa-cutoff membrane. Five siderophores were purified from A. fumigatus culture medium, and the two major siderophores were identified as triacetylfusarinine C and ferricrocin. Both triacetylfusarinine C and ferricrocin removed iron from holoTf with an affinity comparable to that of ferrichrome. These data indicate that A. fumigatus survival in human serum in vitro involves siderophore-mediated removal of iron from transferrin. Proteolytic degradation of transferrin may play a secondary role in iron acquisition.
Applied Microbiology and Biotechnology | 1999
L.A. Launen; Linda J. Pinto; Margo M. Moore
Abstract At present, there is little information on the optimization of the degradation of polycyclic aromatic hydrocarbons (PAH) by deuteromycete filamentous fungi, a reaction catalyzed by cytochrome P450 monooxygenases. We utilized response-surface methodology to determine the optimal growth conditions for the oxidation of the PAH pyrene by Penicillium janthinellum SFU403, with respect to the variables glucose concentration, nitrate concentration and bioconversion time. Models were derived for the relationship between the variables tested and the level of the pyrene oxidation products, 1-pyrenol (1-PY) and pyrenequinones (PQ). Production of 1-PY and PQ were optimized by the same glucose and nitrate concentrations: 2.5% glucose and 1.5% sodium nitrate. The optimized 1-PY and PQ bioconversion times were 71 h and 73 h respectively. These conditions improved the yield of 1-PY by fivefold and PQ were more than 100-fold higher than the baseline levels obtained in this study. The optimized PQ yield represented 95% of the initial pyrene, thus the total optimised pyrene bioconversion to 1-PY and PQ was approximately 100%. Concentrations of glucose exceeding 4.0% repressed pyrene hydroxylation. Pyrene hydroxylation occurred almost exclusively during the deceleration phase of culture growth.
Eukaryotic Cell | 2012
Isabelle Raymond-Bouchard; Cassandra S. Carroll; Jason R. Nesbitt; Kevin A. Henry; Linda J. Pinto; Mina Moinzadeh; Jamie K. Scott; Margo M. Moore
ABSTRACT Siderophores have been identified as virulence factors in the opportunistic fungal pathogen Aspergillus fumigatus. The 14-pass transmembrane protein MirB is postulated to function as a siderophore transporter, responsible for uptake of the hydroxamate siderophore N,N′,N″-triacetylfusarinine C (TAFC). Our aim was to identify amino acids of A. fumigatus MirB that are crucial for uptake of TAFC. Site-directed mutagenesis was used to create MirB mutants. Expression of wild-type and mutant proteins in the Saccharomyces cerevisiae strain PHY14, which lacks endogenous siderophore transporters, was confirmed by Western blotting. TAFC transport assays using 55Fe-labeled TAFC and growth assays with Fe-TAFC as the sole iron source identified alanine 125, tyrosine 577, loop 3, and the second half of loop 7 (Loop7Del2) as crucial for function, since their substitution or deletion abrogated uptake completely. Wild-type MirB transported ferricrocin and coprogen as well as TAFC but not ferrichrysin. MirB was localized by fluorescence microscopy using antisera raised against a MirB extracellular loop peptide. Immunofluorescence microscopy showed that in yeast, wild-type MirB had a punctate distribution under the plasma membrane, as did the A125D and Y577A strains, indicating that the defect in transport of these mutants was unlikely to be due to mislocalization or degradation. MirB immunolocalization in A. fumigatus showed that the transporter was found in vesicles which cycled between the cytoplasm and the plasma membrane and was concentrated at the hyphal tips. The location of MirB was not influenced by the presence of the siderophore TAFC but was sensitive to internal iron stores.
Environmental Toxicology and Chemistry | 2007
Luba Vasiluk; Linda J. Pinto; Zahra A. Walji; Wing Shan Tsang; Frank A. P. C. Gobas; Curtis V. Eickhoff; Margo M. Moore
A major route of exposure to hydrophobic organic contaminants (HOCs), such as benzo[a]pyrene (BaP), is ingestion. Matrix-bound HOCs may become bioavailable after mobilization by the gastrointestinal fluids followed by sorption to the intestinal epithelium. The purpose of this research was to measure the bioavailability of [14C]-BaP bound to pristine soils or field-contaminated sediment using an in vitro model of gastrointestinal digestion followed by sorption to human enterocytes (Caco-2 cells) or to a surrogate membrane, ethylene vinyl acetate (EVA) thin film. Although Caco-2 cells had a twofold higher lipid-normalized fugacity capacity than EVA, [14C]-BaP uptake by Caco-2 lipids and EVA thin film demonstrated a linear relationship within the range of BaP concentrations tested. These results suggest that EVA thin film is a good membrane surrogate for passive uptake of BaP. The in vitro system provided enough sensitivity to detect matrix effects on bioavailability; after 5 h, significantly lower concentrations of [14C]-BaP were sorbed into Caco-2 cells from soil containing a higher percentage of organic matter compared to soil with a lower percentage of organic matter. The [14C]-BaP desorption rate from Caco-2 lipids consistently was twofold higher than from EVA thin film for all matrices tested. The more rapid kinetics observed with Caco-2 cells probably were due to the greater surface area available for absorption/desorption in the cells. After 5 h, the uptake of BaP into Caco-2 lipid was similar in live and metabolically inert Caco-2 cells, suggesting that the primary route of BaP uptake is by passive diffusion. Moreover, the driving force for uptake is the fugacity gradient that exists between the gastrointestinal fluid and the membrane.
Environmental Toxicology and Chemistry | 2006
Jaswinder K. Minhas; Luba Vasiluk; Linda J. Pinto; Frank A. P. C. Gobas; Margo M. Moore
Accurate estimates for the oral bioavailability of hydrophobic contaminants bound to solid matrices are challenging to obtain because of sorption to organic matter. The purpose of this research was to measure the bioavailability of [14C]chrysene sorbed to soil using an in vitro model of gastrointestinal digestion and absorption to a surrogate intestinal membrane, ethylene vinyl acetate (EVA) thin film. The [14C]chrysene moved rapidly from soil into the aqueous compartment and reached steady state within 2 h. Equilibrium was reached in the EVA film within 32 h. Aging the spiked soil for 6 or 12 months had no effect on chrysene mobilization. This was supported by the finding that the data best fit a one-compartment model. Despite significant decreases in [14C]chrysene mobilization when water or nonneutralized gastrointestinal fluids were used in place of the complete medium, the equilibrium concentration of [14C]chrysene in EVA film remained the same in all conditions. Thus, the driving force for uptake was the fugacity gradient between the aqueous phase and the EVA film. Cultured human enterocytes (human colorectal carcinoma cell line [Caco-2 cells]) had a higher lipid-normalized fugacity capacity than EVA film, but the elimination rate constants were the same, suggesting that the rate was controlled by the resistance of the unstirred aqueous layer at the membrane-water interface.
PLOS ONE | 2011
Julian K. Christians; Manjinder S. Cheema; Ismael A. Vergara; Cortney A. Watt; Linda J. Pinto; Nansheng Chen; Margo M. Moore
Infections caused by the fungus Aspergillus are a major cause of morbidity and mortality in immunocompromised populations. To identify genes required for virulence that could be used as targets for novel treatments, we mapped quantitative trait loci (QTL) affecting virulence in the progeny of a cross between two strains of A. nidulans (FGSC strains A4 and A91). We genotyped 61 progeny at 739 single nucleotide polymorphisms (SNP) spread throughout the genome, and constructed a linkage map that was largely consistent with the genomic sequence, with the exception of one potential inversion of ∼527 kb on Chromosome V. The estimated genome size was 3705 cM and the average intermarker spacing was 5.0 cM. The average ratio of physical distance to genetic distance was 8.1 kb/cM, which is similar to previous estimates, and variation in recombination rate was significantly positively correlated with GC content, a pattern seen in other taxa. To map QTL affecting virulence, we measured the ability of each progeny strain to kill model hosts, larvae of the wax moth Galleria mellonella. We detected three QTL affecting in vivo virulence that were distinct from QTL affecting in vitro growth, and mapped the virulence QTL to regions containing 7–24 genes, excluding genes with no sequence variation between the parental strains and genes with only synonymous SNPs. None of the genes in our QTL target regions have been previously associated with virulence in Aspergillus, and almost half of these genes are currently annotated as “hypothetical”. This study is the first to map QTL affecting the virulence of a fungal pathogen in an animal host, and our results illustrate the power of this approach to identify a short list of unknown genes for further investigation.
Biodegradation | 2000
L.A. Launen; Linda J. Pinto; P.W. Percival; S.F.S. Lam; Margo M. Moore
We have previously shown that the filamentous fungus, Penicillium janthinellum SFU403 (SFU403) oxidizes pyrene to pyrene 1,6- and 1,8-quinones and that the level of pyrenequinones (PQs) subsequently declines suggesting that PQs are not terminal metabolites. The purpose of this study was to determine the fate of PQs in SFU403. First, we compared the fate of 14C-pyrene in SFU403 and a non-pyrene-oxidizing fungus, a Paecilomyces sp. After 7 days of incubation, more than 80% of the radioactivity was cell-associated in both fungi; however, while 90% of the 14C could be extracted from the Paecilomyces sp. as unmetabolized pyrene, 65–80% of the bound radioactivity remained inextractable from SFU403. Further evidence that pyrene oxidation to PQs was required for irreversible binding was obtained by comparing the extent of 14C bound to SFU403 when it was grown for 21 days under conditions that resulted in differing amounts of 14C-pyrene oxidation. The results showed that ≈40% of the inextractable products were bound residues derived from pyrene metabolites. The balance (60%) could be attributed to strong sorption of unreacted pyrene. We used electron paramagnetic resonance spectroscopy and oxygen consumption studies to demonstrate that both NADPH and glutathione can reduce PQs by one electron to their corresponding semiquinone anion radicals in vitro. These studies demonstrate that PQs are metabolized by SFU403 to bound residues, possibly via semiquinone intermediates.
Environmental Toxicology and Chemistry | 2005
Luba Vasiluk; Linda J. Pinto; Margo M. Moore
Glyphosate is a commonly used nonselective herbicide that inhibits plant growth through interference with the production of essential aromatic amino acids. In vivo studies in mammals with radiolabeled glyphosate have shown that 34% of radioactivity was associated with intestinal tissue 2 h after oral administration. The aim of our research was to investigate the transport, binding, and toxicity of glyphosate to the cultured human intestinal epithelial cell line, Caco-2, and the rat small intestinal crypt-derived cell line, ileum epithelial cells-18 (IEC-18). An in vitro analysis of the transport kinetics of [14C]-glyphosate showed that 4 h after exposure, approximately 8% of radiolabeled glyphosate moved through the Caco-2 monolayer in a dose-dependent manner. Binding of glyphosate to cells was saturable and approximately 4 x 10(11) binding sites/cell were estimated from bound [14C]. Exposure of Caco-2 cells to > or =10 mg/ml glyphosate reduced transmembrane electrical resistance (TEER) by 82 to 96% and increased permeability to [3H]-mannitol, indicating that paracellular permeability increased in glyphosate-treated cells. At 10-mg/ml glyphosate, both IEC-18 and Caco-2 cells showed disruption in the actin cytoskeleton. In Caco-2 cells, significant lactate dehydrogenase leakage was observed when cells were exposed to 15 mg/ml of glyphosate. These data indicate that at doses >10 mg/ml, glyphosate significantly disrupts the barrier properties of cultured intestinal cells.
Letters in Applied Microbiology | 2009
Linda J. Pinto; Margo M. Moore
Aims: Aspergillus fumigatus is the most common cause of airborne mould infections in immunocompromised patients worldwide. Our aim was to develop a method to identify agents that inhibit siderophore biosynthesis because this pathway is unique to the fungus and is essential for virulence.