Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda K. Buckett is active.

Publication


Featured researches published by Linda K. Buckett.


American Journal of Cardiology | 2001

Preclinical and clinical pharmacology of Rosuvastatin, a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor.

Fergus McTaggart; Linda K. Buckett; Robert G. Davidson; Geoffry Holdgate; Alex McCormick; Dennis W. Schneck; Graham J. Smith; Michael Warwick

Rosuvastatin (formerly ZD4522) is a new 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statin) with distinct pharmacologic properties. Compared with most other statins, it is relatively hydrophilic, similar in this respect to pravastatin. Rosuvastatin has been shown to be a comparatively potent inhibitor of HMG-CoA reductase activity in a purified preparation of the catalytic domain of the human enzyme, as well as in rat and human hepatic microsomes. In rat hepatocytes, rosuvastatin was found to have significantly higher potency as an inhibitor of cholesterol synthesis than 5 other statins. Rosuvastatin was approximately 1,000-fold more potent in rat hepatocytes than in rat fibroblasts. Further studies in rat hepatocytes demonstrated that rosuvastatin is taken up into these cells by a high-affinity active uptake process. Rosuvastatin was also taken up selectively into the liver after intravenous administration in rats. Potent and prolonged HMG-CoA reductase inhibitory activity has been demonstrated after oral administration to rats and dogs. Pharmacokinetic studies in humans using oral doses of 5 to 80 mg showed that maximum plasma concentrations and areas under the concentration-time curve are approximately linear with dose. The terminal half-life is approximately 20 hours. Studies with human hepatic microsomes and human hepatocytes have suggested little or no metabolism via the cytochrome P-450 3A4 isoenzyme. On the basis of these observations, it is suggested that rosuvastatin has the potential to exert a profound effect on atherogenic lipoproteins.


Journal of Medicinal Chemistry | 2009

Discovery of a potent, selective, and orally efficacious pyrimidinooxazinyl bicyclooctaneacetic acid diacylglycerol acyltransferase-1 inhibitor.

Alan Martin Birch; Susan Birtles; Linda K. Buckett; Paul D. Kemmitt; Graham J. Smith; Timothy Smith; Andrew V. Turnbull; Steven Wang

Inhibition of DGAT-1 is increasingly seen as an attractive mechanism with the potential for treatment of obesity and other elements of the metabolic syndrome. We report here a bicyclooctaneacetic acid derivative in the pyrimidinooxazine structural class of DGAT-1 inhibitors that has good potency, selectivity, and pharmacokinetic characteristics across a variety of species. This compound is an effective inhibitor of DGAT-1 in both intestinal and adipose tissue, which results in a reduction in body weight or body weight gain following oral administration in both mouse and rat models of dietary-induced obesity.


FEBS Journal | 2012

Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novo synthesized fatty acids in HepG2 cells

Haja R. Wurie; Linda K. Buckett; Victor A. Zammit

The two diacylglycerol acyltransferases, DGAT1 and DGAT2, are known to have non‐redundant functions, in spite of catalysing the same reaction and being present in the same cell types. The basis for this distinctiveness, which is reflected in the very different phenotypes of Dgat1−/− and Dgat2−/− mice, has not been resolved. Using selective inhibitors of human DGAT1 and DGAT2 on HepG2 cells and gene silencing, we show that, although DGAT2 activity accounts for a modest fraction (< 20%) of overall cellular DGAT activity, inhibition of DGAT2 activity specifically inhibits (and is rate‐limiting for) the incorporation of de novo synthesized fatty acids and of glycerol into cellular and secreted triglyceride to a much greater extent than it affects the incorporation of exogenously added oleate. By contrast, inhibition of DGAT1 affects equally the incorporation of glycerol and exogenous (preformed) oleate into cellular and secreted triacylglycerol (TAG). These data indicate that DGAT2 acts upstream of DGAT1, largely determines the rate of de novo synthesis of triglyceride, and uses nascent diacylglycerol and de novo synthesized fatty acids as substrates. By contrast, the data suggest that DGAT1 functions in the re‐esterification of partial glycerides generated by intracellular lipolysis, using preformed (exogenous) fatty acids. Therefore, we describe distinct but synergistic roles of the two DGATs in an integrated pathway of TAG synthesis and secretion, with DGAT2 acting upstream of DGAT1.


Journal of Lipid Research | 2011

DGAT1 deficiency decreases PPAR expression and does not lead to lipotoxicity in cardiac and skeletal muscle

Li Liu; Shuiqing Yu; Raffay Khan; Gene P. Ables; Kalyani G. Bharadwaj; Yunying Hu; Lesley Ann Huggins; Jan W. Eriksson; Linda K. Buckett; Andrew V. Turnbull; Henry N. Ginsberg; William S. Blaner; Li-Shin Huang; Ira J. Goldberg

Diacylglycerol (DAG) acyl transferase 1 (Dgat1) knockout (−/−) mice are resistant to high-fat-induced obesity and insulin resistance, but the reasons are unclear. Dgat1−/− mice had reduced mRNA levels of all three Ppar genes and genes involved in fatty acid oxidation in the myocardium of Dgat1−/− mice. Although DGAT1 converts DAG to triglyceride (TG), tissue levels of DAG were not increased in Dgat1−/− mice. Hearts of chow-diet Dgat1−/− mice were larger than those of wild-type (WT) mice, but cardiac function was normal. Skeletal muscles from Dgat1−/− mice were also larger. Muscle hypertrophy factors phospho-AKT and phospho-mTOR were increased in Dgat1−/− cardiac and skeletal muscle. In contrast to muscle, liver from Dgat1−/− mice had no reduction in mRNA levels of genes mediating fatty acid oxidation. Glucose uptake was increased in cardiac and skeletal muscle in Dgat1−/− mice. Treatment with an inhibitor specific for DGAT1 led to similarly striking reductions in mRNA levels of genes mediating fatty acid oxidation in cardiac and skeletal muscle. These changes were reproduced in cultured myocytes with the DGAT1 inhibitor, which also blocked the increase in mRNA levels of Ppar genes and their targets induced by palmitic acid. Thus, loss of DGAT1 activity in muscles decreases mRNA levels of genes involved in lipid uptake and oxidation.


Journal of Biological Chemistry | 2011

Evidence That Diacylglycerol Acyltransferase 1 (DGAT1) Has Dual Membrane Topology in the Endoplasmic Reticulum of HepG2 Cells

Haja R. Wurie; Linda K. Buckett; Victor A. Zammit

Triacylglycerol (TAG) synthesis and secretion are important functions of the liver that have major impacts on health, as overaccumulation of TAG within the liver (steatosis) or hypersecretion of TAG within very low density lipoproteins (VLDL) both have deleterious metabolic consequences. Two diacylglycerol acyltransferases (DGATs 1 and 2) can catalyze the final step in the synthesis of TAG from diacylglycerol, which has been suggested to play an important role in the transfer of the glyceride moiety across the endoplasmic reticular membrane for (re)synthesis of TAG on the lumenal aspect of the endoplasmic reticular (ER) membrane (Owen, M., Corstorphine, C. C., and Zammit, V. A. (1997) Biochem. J. 323, 17–21). Recent topographical studies suggested that the oligomeric enzyme DGAT1 is exclusively lumen facing (latent) in the ER membrane. By contrast, in the present study, using two specific inhibitors of human DGAT1, we present evidence that DGAT1 has a dual topology within the ER of HepG2 cells, with approximately equal DGAT1 activities exposed on the cytosolic and lumenal aspects of the ER membrane. This was confirmed by the observation of the loss of both overt (partial) and latent (total) DGAT activity in microsomes prepared from livers of Dgat1−/− mice. Conformational differences between DGAT1 molecules having the different topologies were indicated by the markedly disparate sensitivities of the overt DGAT1 to one of the inhibitors. These data suggest that DGAT1 belongs to the family of oligomeric membrane proteins that adopt a dual membrane topology.


Journal of Lipid Research | 2012

Intestinal DGAT1 deficiency reduces postprandial triglyceride and retinyl ester excursions by inhibiting chylomicron secretion and delaying gastric emptying

Gene P. Ables; Kryscilla Jian Zhang Yang; Silke Vogel; Antonio Hernandez-Ono; Shuiqing Yu; Jason J. Yuen; Susan Birtles; Linda K. Buckett; Andrew V. Turnbull; Ira J. Goldberg; William S. Blaner; Li-Shin Huang; Henry N. Ginsberg

Acyl CoA:diacylglycerol acyltransferase (DGAT) 1 catalyzes the final step of triglyceride (TG) synthesis. We show that acute administration of a DGAT1 inhibitor (DGAT1i) by oral gavage or genetic deletion of intestinal Dgat1 (intestine-Dgat1−/−) markedly reduced postprandial plasma TG and retinyl ester excursions by inhibiting chylomicron secretion in mice. Loss of DGAT1 activity did not affect the efficiency of retinol esterification, but it did reduce TG and retinoid accumulation in the small intestine. In contrast, inhibition of microsomal triglyceride transfer protein (MTP) reduced chylomicron secretion after oral fat/retinol loads, but with accumulation of dietary TG and retinoids in the small intestine. Lack of intestinal accumulation of TG and retinoids in DGAT1i-treated or intestine-Dgat1−/− mice resulted, in part, from delayed gastric emptying associated with increased plasma levels of glucagon-like peptide (GLP)-1. However, neither bypassing the stomach through duodenal oil injection nor inhibiting the receptor for GLP-1 normalized postprandial TG or retinyl esters excursions in the absence of DGAT1 activity. In summary, intestinal DGAT1 inhibition or deficiency acutely delayed gastric emptying and inhibited chylomicron secretion; however, the latter occurred when gastric emptying was normal or when lipid was administered directly into the small intestine. Long-term hepatic retinoid metabolism was not impacted by DGAT1 inhibition.


Journal of Lipid Research | 2013

Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats

Gudrun Schober; Myrtha Arnold; Susan Birtles; Linda K. Buckett; Gustavo Pacheco-López; Andrew V. Turnbull; Wolfgang Langhans; Abdelhak Mansouri

Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased β-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect.


Bioorganic & Medicinal Chemistry Letters | 2012

Identification, optimisation and in vivo evaluation of oxadiazole DGAT-1 inhibitors for the treatment of obesity and diabetes

William Mccoull; Matthew S. Addie; Alan Martin Birch; Susan Birtles; Linda K. Buckett; Roger John Butlin; Suzanne S. Bowker; Scott Boyd; Stephen Chapman; Robert D. M. Davies; Craig S. Donald; Clive Green; Chloe Jenner; Paul D. Kemmitt; Andrew G. Leach; Graeme C. Moody; Pablo Morentin Gutierrez; Nicholas John Newcombe; Thorsten Nowak; Martin J. Packer; Alleyn T. Plowright; John Revill; Paul Schofield; Chris Sheldon; Steve Stokes; Andrew V. Turnbull; Steven Wang; David Paul Whalley; J. Matthew Wood

A novel series of DGAT-1 inhibitors was discovered from an oxadiazole amide high throughput screening (HTS) hit. Optimisation of potency and ligand lipophilicity efficiency (LLE) resulted in a carboxylic acid containing clinical candidate 53 (AZD3988), which demonstrated excellent DGAT-1 potency (0.6 nM), good pharmacokinetics and pre-clinical in vivo efficacy that could be rationalised through a PK/PD relationship.


Bioorganic & Medicinal Chemistry Letters | 2013

Identification and design of a novel series of MGAT2 inhibitors

Jonas G. Barlind; Linda K. Buckett; Sharon G. Crosby; Öjvind Davidsson; Hans Emtenäs; Anne Ertan; Ulrik Jurva; Malin Lemurell; Pablo Morentin Gutierrez; Karolina Nilsson; Annika U. Petersson; Alma Redzic; Fredrik Wågberg; Zhong-Qing Yuan

[Acyl CoA]monoacylglycerol acyltransferase 2 (MGAT2) is of interest as a target for therapeutic treatment of diabetes, obesity and other diseases which together constitute the metabolic syndrome. In this Letter we report our discovery and optimisation of a novel series of MGAT2 inhibitors. The development of the SAR of the series and a detailed discussion around some key parameters monitored and addressed during the lead generation phase will be given. The in vivo results from an oral lipid tolerance test (OLTT) using the MGAT2 inhibitor (S)-10, shows a significant reduction (68% inhibition relative to naїve, p<0.01) in plasma triacylglycerol (TAG) concentration.


Journal of Medicinal Chemistry | 2012

Design and optimization of pyrazinecarboxamide-based inhibitors of diacylglycerol acyltransferase 1 (DGAT1) leading to a clinical candidate dimethylpyrazinecarboxamide phenylcyclohexylacetic acid (AZD7687).

Jonas G. Barlind; Udo Bauer; Alan Martin Birch; Susan Birtles; Linda K. Buckett; Roger John Butlin; Robert D. M. Davies; Jan W. Eriksson; Clare D. Hammond; Ragnar Hovland; Petra Johannesson; Magnus J. Johansson; Paul D. Kemmitt; Bo T. Lindmark; Pablo Morentin Gutierrez; Tobias Noeske; Andreas Nordin; Charles O’Donnell; Annika U. Petersson; Alma Redzic; Andrew V. Turnbull; Johanna Vinblad

A new series of pyrazinecarboxamide DGAT1 inhibitors was designed to address the need for a candidate drug with good potency, selectivity, and physical and DMPK properties combined with a low predicted dose in man. Rational design and optimization of this series led to the discovery of compound 30 (AZD7687), which met the project objectives for potency, selectivity, in particular over ACAT1, solubility, and preclinical PK profiles. This compound showed the anticipated excellent pharmacokinetic properties in human volunteers.

Collaboration


Dive into the Linda K. Buckett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew G. Leach

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge