Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Lefièvre is active.

Publication


Featured researches published by Linda Lefièvre.


Reproduction | 2009

Ca2+-stores in sperm: their identities and functions

Sarah Costello; Francesco Michelangeli; Katherine Nash; Linda Lefièvre; Jennifer Morris; Gisela Machado-Oliveira; Christopher L.R. Barratt; Jackson Kirkman-Brown; Stephen J. Publicover

Intracellular Ca2+ stores play a central role in the regulation of cellular [Ca2+](i) and the generation of complex [Ca2+] signals such as oscillations and waves. Ca2+ signalling is of particular significance in sperm cells, where it is a central regulator in many key activities (including capacitation, hyperactivation, chemotaxis and acrosome reaction) yet mature sperm lack endoplasmic reticulum and several other organelles that serve as Ca2+ stores in somatic cells. Here, we review i) the evidence for the expression in sperm of the molecular components (pumps and channels) which are functionally significant in the activity of Ca2+ stores of somatic cells and ii) the evidence for the existence of functional Ca2+ stores in sperm. This evidence supports the existence of at least two storage organelles in mammalian sperm, one in the acrosomal region and another in the region of the sperm neck and midpiece. We then go on to discuss the probable identity of these organelles and their discrete functions: regulation by the acrosome of its own secretion and regulation by membranous organelles at the sperm neck (and possibly by the mitochondria) of flagellar activity and hyperactivation. Finally, we consider the ability of the sperm discretely to control mobilisation of these stores and the functional interaction of stored Ca2+ at the sperm neck/midpiece with CatSper channels in the principal piece in regulation of the activities of mammalian sperm.


Reproduction | 2007

Counting sperm does not add up any more: time for a new equation?

Linda Lefièvre; K. Bedu-Addo; Sarah J. Conner; Gisela Machado-Oliveira; Y. Chen; Jackson Kirkman-Brown; Masoud Afnan; Stephen J. Publicover; W C. L Ford; Christopher L.R. Barratt

Although sperm dysfunction is the single most common cause of infertility, we have poor methods of diagnosis and surprisingly no effective treatment (excluding assisted reproductive technology). In this review, we challenge the usefulness of a basic semen analysis and argue that a new paradigm is required immediately. We discuss the use of at-home screening to potentially improve the diagnosis of the male and to streamline the management of the sub-fertile couple. Additionally, we outline the recent progress in the field, for example, in proteomics, which will allow the development of new biomarkers of sperm function. This new knowledge will transform our understanding of the spermatozoon as a machine and is likely to lead to non-ART treatments for men with sperm dysfunction.


Journal of Cell Science | 2005

Secretory pathway Ca(2+)-ATPase (SPCA1) Ca(2)+ pumps, not SERCAs, regulate complex [Ca(2+)](i) signals in human spermatozoa.

Claire V. Harper; Laura L. Wootton; Francesco Michelangeli; Linda Lefièvre; Christopher L.R. Barratt; Stephen J. Publicover

The sarcoplasmic-endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors thapsigargin (0.1-1 μM) and cyclopiazonic acid (10 μM), failed to affect resting [Ca2+] in human spermatozoa. Slow progesterone-induced [Ca2+ i]i oscillations in human spermatozoa, which involve cyclic emptying-refilling of an intracellular Ca2+ store were also insensitive to these inhibitors. Non-selective doses of thapsigargin (5-30 μM, 50-300 times the saturating dose for SERCA inhibition), caused elevation of resting [Ca2+]i and partial, dose-dependent disruption of oscillations. A 10-40 μM concentration of bis(2-hydroxy-3-tert-butyl-5-methyl-phenyl)methane (bis-phenol), which inhibits both thapsigargin-sensitive and -insensitive microsomal Ca2+ ATPases, caused elevation of resting [Ca2+]i and inhibition of [Ca2+]i oscillations at doses consistent with inhibition of thapsigargin-resistant, microsomal ATPase and liberation of stored Ca2+. Low doses of bis-phenol had marked effects on [Ca2+]i oscillation kinetics. Application of the drug to cells previously stimulated with progesterone had effects very similar to those observed when it was applied to unstimulated cells, suggesting that the sustained Ca2+ influx induced by progesterone is not mediated via mobilisation of Ca2+ stores. Western blotting for human sperm proteins showed expression of secretory pathway Ca2+ ATPase (SPCA1). Immunolocalisation studies revealed expression of SPCA1 in all cells in an area behind the nucleus, extending into the midpiece. Staining for SERCA, carried out in parallel, detected no expression with either technique. We conclude that: (1) intracellular Ca2+ store(s) and store-dependent [Ca2+]i oscillations in human spermatozoa rely primarily on a thapsigargin/cyclopiazonic acid-insensitive Ca2+ pump, which is not a SERCA as characterised in somatic cells; (2) effects of high-dose thapsigargin on spermatozoa primarily reflect non-specific actions on non-SERCAs and; (3) secretory pathway Ca2+ ATPases contribute at least part of this non-SERCA Ca2+ pump activity.


Development | 2008

Mobilisation of Ca2+ stores and flagellar regulation in human sperm by S-nitrosylation: a role for NO synthesised in the female reproductive tract.

Gisela Machado-Oliveira; Linda Lefièvre; Chris Ford; M. Belen Herrero; Christopher L.R. Barratt; Thomas J. Connolly; Katherine Nash; Aduen Morales-Garcia; Jackson Kirkman-Brown; Steve Publicover

Generation of NO by nitric oxide synthase (NOS) is implicated in gamete interaction and fertilisation. Exposure of human spermatozoa to NO donors caused mobilisation of stored Ca2+ by a mechanism that did not require activation of guanylate cyclase but was mimicked by S-nitroso-glutathione (GSNO; an S-nitrosylating agent). Application of dithiothreitol, to reduce protein -SNO groups, rapidly reversed the actions of NO and GSNO on [Ca2+]i. The effects of NO, GSNO and dithiothreitol on sperm protein S-nitrosylation, assessed using the biotin switch method, closely paralleled their actions on [Ca2+]i. Immunofluorescent staining revealed constitutive and inducible NOS in human oviduct and cumulus (the cellular layer investing the oocyte). 4,5-diaminofluorescein (DAF) staining demonstrated production of NO by these tissues. Incubation of human sperm with oviduct explants induced sperm protein S-nitrosylation resembling that induced by NO donors and GSNO. Progesterone (a product of cumulus cells) also mobilises stored Ca2+ in human sperm. Pre-treatment of sperm with NO greatly enhanced the effect of progesterone on [Ca2+]i, resulting in a prolonged increase in flagellar excursion. We conclude that NO regulates mobilisation of stored Ca2+ in human sperm by protein S-nitrosylation, that this action is synergistic with that of progesterone and that this synergism is potentially highly significant in gamete interactions leading to fertilisation.


Reproductive Biomedicine Online | 2003

Physiological and proteomic approaches to studying prefertilization events in the human

Linda Lefièvre; Christopher L.R. Barratt; Claire V. Harper; Sarah J. Conner; Frits M. Flesch; Emma D. Deeks; Fleur L.C. Moseley; Katherine L. Pixton; Ian Andrew Brewis; Stephen J. Publicover

This research aims firstly to understand, in cellular and molecular terms, how a mature human spermatozoon is prepared for fertilization, and secondly, to identify what factors are involved in the initial signalling interactions between the egg and spermatozoon. In order to achieve these objectives, a combination of approaches is being used, including single-cell imaging, patch clamping and proteomics. Single-cell imaging reveals hidden complexity and heterogeneity in signalling responses in spermatozoa. Characterization of cell physiology at the single-cell level must be a future aim, including the study of ion channel expression and function by patch clamping. Proteomic experiments are aimed at identifying defects in protein expression in specific subgroups of men, e.g. those with globozoospermia. A better understanding of prefertilization events will allow the development of non-assisted reproductive therapy, drug-based treatments for male infertility.


Biochemical Journal | 2012

2-APB-potentiated channels amplify CatSper-induced Ca2+ signals in human sperm

Linda Lefièvre; Katherine Nash; Steven A. Mansell; Sarah Costello; Emma L. Punt; Joao Correia; Jennifer Morris; Jackson Kirkman-Brown; Stuart M. Wilson; Christopher L.R. Barratt; Stephen J. Publicover

Ca2+i signalling is pivotal to sperm function. Progesterone, the best-characterized agonist of human sperm Ca2+i signalling, stimulates a biphasic [Ca2+]i rise, comprising a transient and subsequent sustained phase. In accordance with recent reports that progesterone directly activates CatSper, the [Ca2+]i transient was detectable in the anterior flagellum (where CatSper is expressed) 1–2 s before responses in the head and neck. Pre-treatment with 5 μM 2-APB (2-aminoethoxydiphenyl borate), which enhances activity of store-operated channel proteins (Orai) by facilitating interaction with their activator [STIM (stromal interaction molecule)] ‘amplified’ progesterone-induced [Ca2+]i transients at the sperm neck/midpiece without modifying kinetics. The flagellar [Ca2+]i response was unchanged. 2-APB (5 μM) also enhanced the sustained response in the midpiece, possibly reflecting mitochondrial Ca2+ accumulation downstream of the potentiated [Ca2+]i transient. Pre-treatment with 50–100 μM 2-APB failed to potentiate the transient and suppressed sustained [Ca2+]i elevation. When applied during the [Ca2+]i plateau, 50–100 μM 2-APB caused a transient fall in [Ca2+]i, which then recovered despite the continued presence of 2-APB. Loperamide (a chemically different store-operated channel agonist) enhanced the progesterone-induced [Ca2+]i signal and potentiated progesterone-induced hyperactivated motility. Neither 2-APB nor loperamide raised pHi (which would activate CatSper) and both compounds inhibited CatSper currents. STIM and Orai were detected and localized primarily to the neck/midpiece and acrosome where Ca2+ stores are present and the effects of 2-APB are focussed, but store-operated currents could not be detected in human sperm. We propose that 2-APB-sensitive channels amplify [Ca2+]i elevation induced by progesterone (and other CatSper agonists), amplifying, propagating and providing spatio-temporal complexity in [Ca2+]i signals of human sperm.


Human Reproduction | 2014

Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity.

Steve Tardif; Oladipo Madamidola; Sean G. Brown; Lorna Frame; Linda Lefièvre; Paul G. Wyatt; Christopher L.R. Barratt; Sarah J. Martins da Silva

STUDY QUESTION Can we identify compound(s) with reported phosphodiesterase inhibitor (PDEI) activity that could be added to human spermatozoa in vitro to enhance their motility without compromising other sperm functions? SUMMARY ANSWER We have identified several compounds that produce robust and effective stimulation of sperm motility and, importantly, have a positive response on patient samples. WHAT IS KNOWN ALREADY For >20 years, the use of non-selective PDEIs, such as pentoxifylline, has been known to influence the motility of human spermatozoa; however, conflicting results have been obtained. It is now clear that human sperm express several different phosphodiesterases and these are compartmentalized at different regions of the cells. By using type-specific PDEIs, differential modulation of sperm motility may be achieved without adversely affecting other functions such as the acrosome reaction (AR). STUDY DESIGN, SIZE, DURATION This was a basic medical research study examining sperm samples from normozoospermic donors and subfertile patients attending the Assisted Conception Unit (ACU), Ninewells Hospital Dundee for diagnostic semen analysis, IVF and ICSI. Phase 1 screened 43 commercially available compounds with reported PDEI activity to identify lead compounds that stimulate sperm motility. Samples were exposed (20 min) to three concentrations (1, 10 and 100 µM) of compound, and selected candidates (n = 6) progressed to Phase 2, which provided a more comprehensive assessment using a battery of in vitro sperm function tests. PARTICIPANTS/MATERIALS, SETTING, METHODS All healthy donors and subfertile patients were recruited at the Medical Research Institute, University of Dundee and ACU, Ninewells Hospital Dundee (ethical approval 08/S1402/6). In Phase 1, poor motility cells recovered from the 40% interface of the discontinuous density gradient were used as surrogates for patient samples. Pooled samples from three to four different donors were utilized in order to reduce variability and increase the number of cells available for simultaneous examination of multiple compounds. During Phase 2 testing, semen samples from 23 patients attending for either routine diagnostic andrology assessment or IVF/ICSI were prepared and exposed to selected compounds. Additionally, 48 aliquots of prepared samples, surplus to clinical use, were examined from IVF (n = 32) and ICSI (n = 16) patients to further determine the effects of selected compounds under clinical conditions of treatment. Effects of compounds on sperm motility were assessed by computer-assisted sperm analysis. A modified Kremer test using methyl cellulose was used to assess sperm functional ability to penetrate into viscous media. Sperm acrosome integrity and induction of apoptosis were assessed using the acrosomal content marker PSA-FITC and annexin V kit, respectively. MAIN RESULTS AND THE ROLE OF CHANCE In Phase 1, six compounds were found to have a strong effect on poor motility samples with a magnitude of response of ≥60% increase in percentage total motility. Under capacitating and non-capacitating conditions, these compounds significantly (P ≤ 0.05) increased the percentage of total and progressive motility. Furthermore, these compounds enhanced penetration into a cervical mucus substitute (P ≤ 0.05). Finally, the AR was not significantly induced and these compounds did not significantly increase the externalization of phosphatidylserine (P = 0.6, respectively). In general, the six compounds maintained the stimulation of motility over long periods of time (180 min) and their effects were still observed after their removal. In examinations of clinical samples, there was a general observation of a more significant stimulation of sperm motility in samples with lower baseline motility. In ICSI samples, compounds #26, #37 and #38 were the most effective at significantly increasing total motility (88, 81 and 79% of samples, respectively) and progressive motility (94, 93 and 81% of samples, respectively). In conclusion, using a two-phased drug discovery screening approach including the examination of clinical samples, 3/43 compounds were identified as promising candidates for further study. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study and caution must be taken when extrapolating the results. Data for patients were from one assessment and thus the robustness of responses needs to be established. The n values for ICSI samples were relatively small. WIDER IMPLICATIONS OF THE FINDINGS We have systematically screened and identified several compounds that have robust and effective stimulation (i.e. functional significance with longevity and no toxicity) of total and progressive motility under clinical conditions of treatment. These compounds could be clinical candidates with possibilities in terms of assisted reproductive technology options for current or future patients affected by asthenozoospermia or oligoasthenozoospermia. STUDY FUNDING/COMPETING INTEREST(S) This study was funded primarily by the MRC (DPFS) but with additional funding from the Wellcome Trust, Tenovus (Scotland), University of Dundee, NHS Tayside and Scottish Enterprise. The authors have no competing interests. A patent (#WO2013054111A1) has been published containing some of the information presented in this manuscript.


Journal of Visualized Experiments | 2010

Techniques for imaging Ca2+ signaling in human sperm.

Katherine Nash; Linda Lefièvre; Ruben Peralta-Arias; Jennifer Morris; Aduen Morales-Garcia; Thomas J. Connolly; Sarah Costello; Jackson Kirkman-Brown; Stephen J. Publicover

Fluorescence microscopy of cells loaded with fluorescent, Ca2+-sensitive dyes is used for measurement of spatial and temporal aspects of Ca2+ signaling in live cells. Here we describe the method used in our laboratories for loading suspensions of human sperm with Ca2+-reporting dyes and measuring the fluorescence signal during physiological stimulation. Motile cells are isolated by direct swim-up and incubated under capacitating conditions for 0-24 h, depending upon the experiment. The cell-permeant AM (acetoxy methyl ester) ester form of the Ca2+-reporting dye is then added to a cell aliquot and a period of 1 h is allowed for loading of the dye into the cytoplasm. We use visible wavelength dyes to minimize photo-damage to the cells, but this means that ratiometric recording is not possible. Advantages and disadvantages of this approach are discussed. During the loading period cells are introduced into an imaging chamber and allowed to adhere to a poly-D-lysine coated coverslip. At the end of the loading period excess dye and loose cells are removed by connection of the chamber to the perfusion apparatus. The chamber is perfused continuously, stimuli and modified salines are then added to the perfusion header. Experiments are recorded by time-lapse acquisition of fluorescence images and analyzed in detail offline, by manually drawing regions of interest. Data are normalized to pre-stimulus levels such that, for each cell (or part of a cell), a graph showing the Ca2+ response as % change in fluorescence is obtained.


Molecular Human Reproduction | 2015

Cell penetrating peptides, targeting the regulation of store-operated channels, slow decay of the progesterone-induced [Ca2+]i signal in human sperm

Jennifer Morris; Sarah Jones; John Howl; Monika Lukanowska; Linda Lefièvre; Stephen J. Publicover

Previous work has provided evidence for involvement of store-operated channels (SOCs) in [Ca2+]i signalling of human sperm, including a contribution to the transient [Ca2+]i elevation that occurs upon activation of CatSper, a sperm-specific cation channel localized to the flagellum, by progesterone. To further investigate the potential involvement of SOCs in the generation of [Ca2+]i signals in human sperm, we have used cell-penetrating peptides containing the important basic sequence KIKKK, part of the STIM–Orai activating region/CRAC activating domain (SOAR/CAD) of the regulatory protein stromal interaction molecule 1. SOAR/CAD plays a key role in controlling the opening of SOCs, which occurs upon mobilization of stored Ca2+. Resting [Ca2+]i temporarily decreased upon application of KIKKK peptide (3–4 min), but scrambled KIKKK peptide had a similar effect, indicating that this action was not sequence-specific. However, in cells pretreated with KIKKK, the transient [Ca2+]i elevation induced by stimulation with progesterone decayed significantly more slowly than in parallel controls and in cells pretreated with scrambled KIKKK peptide. Examination of single-cell responses showed that this effect was due, at least in part, to an increase in the proportion of cells in which the initial transient was maintained for an extended period, lasting up to 10 min in a subpopulation of cells. We hypothesize that SOCs contribute to the progesterone-induced [Ca2+]i transient, and that interference with the regulatory mechanisms of SOC delays their closure, causing a prolongation of the [Ca2+]i transient.


Communicative & Integrative Biology | 2009

Communication between female tract and sperm: Saying NO* when you mean yes.

Linda Lefièvre; Gisela Machado-Oliveira; Chris Ford; Jackson Kirkman-Brown; Christopher L.R. Barratt; Steve Publicover

Signaling through [Ca2+]i is central to regulation of sperm activity and is likely to be the mechanism by which signal from the female tract regulate motility of sperm. In a recent paper1 we showed that exposure of sperm to nitric oxide mobilizes stored Ca2+ in human sperm, an effect that occurs through nitrosylation of protein thiols. Not only did we find that NO• production by cells of the human female tract would be sufficient to elicit this effect, but progesterone, which is also present in the female tract and is synthesized by the oocyte vestments, acted synergistically with NO• to mobilize Ca2+ and enhance flagellar beating. Here we argue that a Ca2+ store at the junction of the sperm head and flagellum is subject to regulation by both progesterone and NO• and that ryanodine receptors at the store may be the point at which coincidence detection and synergistic interaction occurs.

Collaboration


Dive into the Linda Lefièvre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine Nash

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Costello

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jennifer Morris

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge