Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Rousseau is active.

Publication


Featured researches published by Linda Rousseau.


Science | 2015

C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits

Jeannie Chew; Tania F. Gendron; Mercedes Prudencio; Hiroki Sasaguri; Yong Jie Zhang; Monica Castanedes-Casey; Chris W. Lee; Karen Jansen-West; Aishe Kurti; Melissa E. Murray; Kevin F. Bieniek; Peter O. Bauer; Ena C. Whitelaw; Linda Rousseau; Jeannette N. Stankowski; Caroline Stetler; Lillian M. Daughrity; Emilie A. Perkerson; Pamela Desaro; Amelia Johnston; Karen Overstreet; Dieter Edbauer; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; John D. Fryer; Leonard Petrucelli

A mouse model for ALS A G4C2 repeat expansion in C9ORF72 is known to be the major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). However, a lack of animal models recapitulating key disease features has hindered efforts to understand and prevent c9FTD/ALS-related neurodegeneration. Until now. Chew et al. describe a mouse model that mimics both neuropathological and clinical phenotypes of c9FTD/ALS. Science, this issue p. 1151 A mouse model mimics the pathological and behavioral abnormalities seen in certain amyotrophic lateral sclerosis or frontotemporal dementia patients. The major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis is a G4C2 repeat expansion in C9ORF72. Efforts to combat neurodegeneration associated with “c9FTD/ALS” are hindered by a lack of animal models recapitulating disease features. We developed a mouse model to mimic both neuropathological and clinical c9FTD/ALS phenotypes. We expressed (G4C2)66 throughout the murine central nervous system by means of somatic brain transgenesis mediated by adeno-associated virus. Brains of 6-month-old mice contained nuclear RNA foci, inclusions of poly(Gly-Pro), poly(Gly-Ala), and poly(Gly-Arg) dipeptide repeat proteins, as well as TDP-43 pathology. These mouse brains also exhibited cortical neuron and cerebellar Purkinje cell loss, astrogliosis, and decreased weight. (G4C2)66 mice also developed behavioral abnormalities similar to clinical symptoms of c9FTD/ALS patients, including hyperactivity, anxiety, antisocial behavior, and motor deficits.


Acta Neuropathologica | 2013

LRRK2 phosphorylates novel tau epitopes and promotes tauopathy

Rachel M. Bailey; Jason P. Covy; Heather L. Melrose; Linda Rousseau; Ruth Watkinson; Joshua Knight; Sarah Miles; Matthew J. Farrer; Dennis W. Dickson; Benoit I. Giasson; Jada Lewis

Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial Parkinson’s disease (PD). The neuropathology of LRRK2-related PD is heterogeneous and can include aberrant tau phosphorylation or neurofibrillary tau pathology. Recently, LRRK2 has been shown to phosphorylate tau in vitro; however, the major epitopes phosphorylated by LRRK2 and the physiological or pathogenic consequences of these modifications in vivo are unknown. Using mass spectrometry, we identified multiple sites on recombinant tau that are phosphorylated by LRRK2 in vitro, including pT149 and pT153, which are phospho-epitopes that to date have been largely unexplored. Importantly, we demonstrate that expression of transgenic LRRK2 in a mouse model of tauopathy increased the aggregation of insoluble tau and its phosphorylation at T149, T153, T205, and S199/S202/T205 epitopes. These findings indicate that tau can be a LRRK2 substrate and that this interaction can enhance salient features of human disease.


Journal of Neurochemistry | 2013

TMEM106B p.T185S regulates TMEM106B protein levels: implications for frontotemporal dementia.

Alexandra M. Nicholson; NiCole Finch; Aleksandra Wojtas; Matt Baker; Ralph B. Perkerson; Monica Castanedes-Casey; Linda Rousseau; Luisa Benussi; Giuliano Binetti; Roberta Ghidoni; Ging Yuek R Hsiung; Ian R. Mackenzie; Elizabeth Finger; Bradley F. Boeve; Nilufer Ertekin-Taner; Neill R. Graff-Radford; Dennis W. Dickson; Rosa Rademakers

Frontotemporal lobar degeneration (FTLD) is the second leading cause of dementia in individuals under age 65. In many patients, the predominant pathology includes neuronal cytoplasmic or intranuclear inclusions of ubiquitinated TAR DNA binding protein 43 (FTLD‐TDP). Recently, a genome‐wide association study identified the first FTLD‐TDP genetic risk factor, in which variants in and around the TMEM106B gene (top SNP rs1990622) were significantly associated with FTLD‐TDP risk. Intriguingly, the most significant association was in FTLD‐TDP patients carrying progranulin (GRN) mutations. Here, we investigated to what extent the coding variant, rs3173615 (p.T185S) in linkage disequilibrium with rs1990622, affects progranulin protein (PGRN) biology and transmembrane protein 106 B (TMEM106B) regulation. First, we confirmed the association of TMEM106B variants with FTLD‐TDP in a new cohort of GRN mutation carriers. We next generated and characterized a TMEM106B‐specific antibody for investigation of this protein. Enzyme‐linked immunoassay analysis of progranulin protein levels showed similar effects upon T185 and S185 TMEM106B over‐expression. However, over‐expression of T185 consistently led to higher TMEM106B protein levels than S185. Cycloheximide treatment experiments revealed that S185 degrades faster than T185 TMEM106B, potentially due to differences in N‐glycosylation at residue N183. Together, our results provide a potential mechanism by which TMEM106B variants lead to differences in FTLD‐TDP risk.


Acta Neuropathologica | 2015

Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers

Tania F. Gendron; Marka van Blitterswijk; Kevin F. Bieniek; Lillian M. Daughrity; Jie Jiang; Beth K. Rush; Otto Pedraza; John A. Lucas; Melissa E. Murray; Pamela Desaro; Amelia Robertson; Karen Overstreet; Colleen S. Thomas; Julia E. Crook; Monica Castanedes-Casey; Linda Rousseau; Keith A. Josephs; Joseph E. Parisi; David S. Knopman; Ronald C. Petersen; Bradley F. Boeve; Neill R. Graff-Radford; Rosa Rademakers; Clotilde Lagier-Tourenne; Dieter Edbauer; Don W. Cleveland; Dennis W. Dickson; Leonard Petrucelli; Kevin B. Boylan

Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed “c9RAN proteins” produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers.


Science Translational Medicine | 2017

Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis

Tania F. Gendron; Jeannie Chew; Jeannette N. Stankowski; Lindsey R. Hayes; Yong Jie Zhang; Mercedes Prudencio; Yari Carlomagno; Lillian M. Daughrity; Karen Jansen-West; Emilie A. Perkerson; Aliesha O'Raw; Casey Cook; Luc Pregent; Veronique V. Belzil; Marka van Blitterswijk; Lilia J. Tabassian; Chris W. Lee; Mei Yue; Jimei Tong; Yuping Song; Monica Castanedes-Casey; Linda Rousseau; Virginia Phillips; Dennis W. Dickson; Rosa Rademakers; John D. Fryer; Beth K. Rush; Otto Pedraza; Ana M. Caputo; Pamela Desaro

Poly(GP) proteins are a promising pharmacodynamic marker for developing and testing therapeutics for treating C9ORF72-associated amyotrophic lateral sclerosis. Homing in on poly(GP) proteins A mutation in the C9ORF72 gene causes amyotrophic lateral sclerosis (ALS) through the accumulation of G4C2 RNA. Therapeutics that target G4C2 RNA are thus being developed. Testing these therapeutics in patients with “c9ALS” will depend on finding a marker to monitor the effect of treatments on G4C2 RNA. Gendron et al. demonstrate that poly(GP) proteins produced from G4C2 RNA are present in cerebrospinal fluid from c9ALS patients. Furthermore, using patient cell models and a mouse model of c9ALS, they report that poly(GP) proteins correlate with G4C2 RNA, suggesting that poly(GP) could be used to test potential treatments for c9ALS in upcoming clinical trials. There is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating motor neuron disease. However, discovery of a G4C2 repeat expansion in the C9ORF72 gene as the most common genetic cause of ALS has opened up new avenues for therapeutic intervention for this form of ALS. G4C2 repeat expansion RNAs and proteins of repeating dipeptides synthesized from these transcripts are believed to play a key role in C9ORF72-associated ALS (c9ALS). Therapeutics that target G4C2 RNA, such as antisense oligonucleotides (ASOs) and small molecules, are thus being actively investigated. A limitation in moving such treatments from bench to bedside is a lack of pharmacodynamic markers for use in clinical trials. We explored whether poly(GP) proteins translated from G4C2 RNA could serve such a purpose. Poly(GP) proteins were detected in cerebrospinal fluid (CSF) and in peripheral blood mononuclear cells from c9ALS patients and, notably, from asymptomatic C9ORF72 mutation carriers. Moreover, CSF poly(GP) proteins remained relatively constant over time, boding well for their use in gauging biochemical responses to potential treatments. Treating c9ALS patient cells or a mouse model of c9ALS with ASOs that target G4C2 RNA resulted in decreased intracellular and extracellular poly(GP) proteins. This decrease paralleled reductions in G4C2 RNA and downstream G4C2 RNA–mediated events. These findings indicate that tracking poly(GP) proteins in CSF could provide a means to assess target engagement of G4C2 RNA–based therapies in symptomatic C9ORF72 repeat expansion carriers and presymptomatic individuals who are expected to benefit from early therapeutic intervention.


Human Molecular Genetics | 2015

Tau deposition drives neuropathological, inflammatory and behavioral abnormalities independently of neuronal loss in a novel mouse model

Casey Cook; Silvia S. Kang; Yari Carlomagno; Wen Lang Lin; Mei Yue; Aishe Kurti; Mitsuru Shinohara; Karen Jansen-West; Emilie A. Perkerson; Monica Castanedes-Casey; Linda Rousseau; Virginia Phillips; Guojun Bu; Dennis W. Dickson; Leonard Petrucelli; John D. Fryer

Aberrant tau protein accumulation drives neurofibrillary tangle (NFT) formation in several neurodegenerative diseases. Currently, efforts to elucidate pathogenic mechanisms and assess the efficacy of therapeutic targets are limited by constraints of existing models of tauopathy. In order to generate a more versatile mouse model of tauopathy, somatic brain transgenesis was utilized to deliver adeno-associated virus serotype 1 (AAV1) encoding human mutant P301L-tau compared with GFP control. At 6 months of age, we observed widespread human tau expression with concomitant accumulation of hyperphosphorylated and abnormally folded proteinase K resistant tau. However, no overt neuronal loss was observed, though significant abnormalities were noted in the postsynaptic scaffolding protein PSD95. Neurofibrillary pathology was also detected with Gallyas silver stain and Thioflavin-S, and electron microscopy revealed the deposition of closely packed filaments. In addition to classic markers of tauopathy, significant neuroinflammation and extensive gliosis were detected in AAV1-TauP301L mice. This model also recapitulates the behavioral phenotype characteristic of mouse models of tauopathy, including abnormalities in exploration, anxiety, and learning and memory. These findings indicate that biochemical and neuropathological hallmarks of tauopathies are accurately conserved and are independent of cell death in this novel AAV-based model of tauopathy, which offers exceptional versatility and speed in comparison with existing transgenic models. Therefore, we anticipate this approach will facilitate the identification and validation of genetic modifiers of disease, as well as accelerate preclinical assessment of potential therapeutic targets.


Neurobiology of Aging | 2014

Severe amygdala dysfunction in a MAPT transgenic mouse model of frontotemporal dementia

Casey Cook; Judy Dunmore; Melissa E. Murray; Kristyn Scheffel; Nawsheen Shukoor; Jimei Tong; Monica Castanedes-Casey; Virginia Phillips; Linda Rousseau; Michael S. Penuliar; Aishe Kurti; Dennis W. Dickson; Leonard Petrucelli; John D. Fryer

Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is a neurodegenerative tauopathy caused by mutations in the tau gene (MAPT). Individuals with FTDP-17 have deficits in learning, memory, and language, in addition to personality and behavioral changes that are often characterized by a lack of social inhibition. Several transgenic mouse models expressing tau mutations have been tested extensively for memory or motor impairments, though reports of amygdala-dependent behaviors are lacking. To this end, we tested the rTg4510 mouse model on a behavioral battery that included amygdala-dependent tasks of exploration. As expected, rTg4510 mice exhibit profound impairments in hippocampal-dependent learning and memory tests, including contextual fear conditioning. However, rTg4510 mice also display an abnormal hyperexploratory phenotype in the open-field assay, elevated plus maze, light-dark exploration, and cued fear conditioning, indicative of amygdala dysfunction. Furthermore, significant tau burden is detected in the amygdala of both rTg4510 mice and human FTDP-17 patients, suggesting that the rTg4510 mouse model recapitulates the behavioral disturbances and neurodegeneration of the amygdala characteristic of FTDP-17.


Autophagy | 2018

Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease

Xu Hou; Fabienne C. Fiesel; Dominika Truban; Monica Castanedes Casey; Wen Lang Lin; Alexandra I. Soto; Pawel Tacik; Linda Rousseau; Nancy N. Diehl; Michael G. Heckman; Oswaldo Lorenzo-Betancor; Isidre Ferrer; José Matías Arbelo; John C. Steele; Matthew J. Farrer; Mario Cornejo-Olivas; Luis Torres; Ignacio F. Mata; Neill R. Graff-Radford; Zbigniew K. Wszolek; Owen A. Ross; Melissa E. Murray; Dennis W. Dickson; Wolfdieter Springer

ABSTRACT Although exact causes of Parkinson disease (PD) remain enigmatic, mitochondrial dysfunction is increasingly appreciated as a key determinant of dopaminergic neuron susceptibility in both familial and sporadic PD. Two genes associated with recessive, early-onset PD encode the ubiquitin (Ub) kinase PINK1 and the E3 Ub ligase PRKN/PARK2/Parkin, which together orchestrate a protective mitochondrial quality control (mitoQC) pathway. Upon stress, both enzymes cooperatively identify and decorate damaged mitochondria with phosphorylated poly-Ub (p-S65-Ub) chains. This specific label is subsequently recognized by autophagy receptors that further facilitate mitochondrial degradation in lysosomes (mitophagy). Here, we analyzed human post-mortem brain specimens and identified distinct pools of p-S65-Ub-positive structures that partially colocalized with markers of mitochondria, autophagy, lysosomes and/or granulovacuolar degeneration bodies. We further quantified levels and distribution of the ‘mitophagy tag’ in 2 large cohorts of brain samples from normal aging and Lewy body disease (LBD) cases using unbiased digital pathology. Somatic p-S65-Ub structures independently increased with age and disease in distinct brain regions and enhanced levels in LBD brain were age- and Braak tangle stage-dependent. Additionally, we observed significant correlations of p-S65-Ub with LBs and neurofibrillary tangle levels in disease. The degree of co-existing p-S65-Ub signals and pathological PD hallmarks increased in the pre-mature stage, but decreased in the late stage of LB or tangle aggregation. Altogether, our study provides further evidence for a potential pathogenic overlap among different forms of PD and suggests that p-S65-Ub can serve as a biomarker for mitochondrial damage in aging and disease. Abbreviations: BLBD: brainstem predominant Lewy body disease; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DLB: dementia with Lewy bodies; DLBD: diffuse neocortical Lewy body disease; EOPD: early-onset Parkinson disease; GVB: granulovacuolar degeneration body; LB: Lewy body; LBD: Lewy body disease; mitoQC: mitochondrial quality control; nbM: nucleus basalis of Meynert; PD: Parkinson disease; PDD: Parkinson disease with dementia; p-S65-Ub: PINK1-phosphorylated serine 65 ubiquitin; SN: substantia nigra; TLBD: transitional Lewy body disease; Ub: ubiquitin


Acta Neuropathologica | 2012

Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction

Ashley Cannon; Baoli Yang; Joshua Knight; Ian M. Farnham; Yong Jie Zhang; Charles A. Wuertzer; Simon D'Alton; Wen-Lang Lin; Monica Castanedes-Casey; Linda Rousseau; Brittany Scott; Michael Jurasic; John Howard; Xin Yu; Rachel M. Bailey; Matthew R. Sarkisian; Dennis W. Dickson; Leonard Petrucelli; Jada Lewis


Acta Neuropathologica | 2017

In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers

Mariely DeJesus-Hernandez; Ni Cole A. Finch; Xue Wang; Tania F. Gendron; Kevin F. Bieniek; Michael G. Heckman; Aliaksei Vasilevich; Melissa E. Murray; Linda Rousseau; Rachael Weesner; Anthony Lucido; Meeia Parsons; Jeannie Chew; Keith A. Josephs; Joseph E. Parisi; David S. Knopman; Ronald C. Petersen; Bradley F. Boeve; Neill R. Graff-Radford; Jan de Boer; Yan W. Asmann; Leonard Petrucelli; Kevin B. Boylan; Dennis W. Dickson; Marka van Blitterswijk; Rosa Rademakers

Collaboration


Dive into the Linda Rousseau's collaboration.

Researchain Logo
Decentralizing Knowledge