Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Sleire is active.

Publication


Featured researches published by Linda Sleire.


Cancer Research | 2010

Glioma Cell Populations Grouped by Different Cell Type Markers Drive Brain Tumor Growth

Lars Prestegarden; Agnete Svendsen; Jian Wang; Linda Sleire; Kai Ove Skaftnesmo; Rolf Bjerkvig; Tao Yan; Lasse Askland; Andreas Persson; Per Øystein Sakariassen; Per Øyvind Enger

Although CD133 has been proposed as a marker for brain tumor-initiating cells, studies show that a tumorigenic potential exists among CD133(-) glioma cells as well. However, it is not established whether the ability of CD133(-) cells to form tumors is a property confined to a small subpopulation, rather than a common trait associated with most glioma cell types. Thus, we used lentiviral vectors expressing green fluorescent protein under lineage-specific promoters to identify CD133(-) glioma cells expressing Nestin, glial fibrillary acidic protein (GFAP), and neuron-specific enolase (NSE). Flow cytometry analysis showed the presence of CD133(-) subpopulations expressing these markers in glioma cell lines and in primary cultures from human glioblastoma (GBM) biopsies. Moreover, analysis of cell cycle distribution showed that subgroups expressing Nestin, GFAP, and NSE uniformly contained actively cycling cells, when cultured in serum-containing medium and stem cell medium. These subpopulations were fluorescence-activated cell sorted from CD133(-) U373 glioma cells and implanted intracerebrally in severe combined immunodeficient mice. Moreover, we implanted Nestin-, GFAP-, and NSE-positive glioma cells sorted from a human GBM biopsy, following removal of CD133-positive cells. All the CD133(-) subpopulations produced tumors, with no significant differences in survival or tumor take rates. However, there was a trend toward lower take rates for CD133(-) glioma subpopulations expressing GFAP and NSE. These findings suggest that the ability to form tumors may be a general trait associated with different glioma cell phenotypes, rather than a property limited to an exclusive subpopulation of glioma stem cells.


Chronobiology International | 2009

Induction of Circadian Rhythm in Cultured Human Mesenchymal Stem Cells by Serum Shock and cAMP Analogs in Vitro

Tien Sheng Huang; Gunnveig Grødeland; Linda Sleire; Meng Yu Wang; Gunnar Kvalheim; Ole Didrik Laerum

Circadian clocks have been shown to operate developmentally in mouse and human hematopoietic stem and progenitor cells in vivo, but little is known about their possible oscillations in vitro. Here, we show that repeated circadian oscillations could be induced in both cultured bone marrow‐derived mesenchymal‐ and adipose‐derived stem cells (MSCs and ASCs, respectively) by serum shock. In particular, the novel finding of rhythmic clock gene expression induced by cAMP analogs showed similarities as well as differences to serum‐induced oscillations. Rhythmic PER1 expression was found in serum‐shocked MSCs, suggesting the phosphorylation status of PER1 is important for its activity in circadian rhythms. Furthermore, immunofluoresent staining showed that the localization of PER1 was dependent on the level of PER1 expression. These inducible self‐sustained circadian clocks in primary cultures of human MSCs in vitro with rhythmic changes in expression levels, phosphorylation, and localization of clock protein, PER1, may be of importance for maintaining the induced oscillations in stem cells. Therefore, the established cell models described here appear to be valuable for studying the molecular mechanism driving and coordinating the circadian network between stem and stromal cells.


BMC Cancer | 2011

Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide

Tao Yan; Kai Ove Skaftnesmo; Lina Leiss; Linda Sleire; Jian Wang; Xingang Li; Per Øyvind Enger

BackgroundExpression of neuronal elements has been identified in various glial tumors, and glioblastomas (GBMs) with neuronal differentiation patterns have reportedly been associated with longer survival. However, the neuronal class III β-tubulin has been linked to increasing malignancy in astrocytomas. Thus, the significance of neuronal markers in gliomas is not established.MethodsThe expressions of class III β-tubulin, neurofilament protein (NFP), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE) were investigated in five GBM cell lines and two GBM biopsies with immunocytochemistry and Western blot. Moreover, the expression levels were quantified by real-time qPCR under different culture conditions. Following NSE siRNA treatment we used Electric cell-substrate impedance sensing (ECIS) to monitor cell growth and migration and MTS assays to study viability after irradiation and temozolomide treatment. Finally, we quantitated NSE expression in a series of human glioma biopsies with immunohistochemistry using a morphometry software, and collected survival data for the corresponding patients. The biopsies were then grouped according to expression in two halves which were compared by survival analysis.ResultsImmunocytochemistry and Western blotting showed that all markers except NFP were expressed both in GBM cell lines and biopsies. Notably, qPCR demonstrated that NSE was upregulated in cellular stress conditions, such as serum-starvation and hypoxia, while we found no uniform pattern for the other markers. NSE knockdown reduced the migration of glioma cells, sensitized them to hypoxia, radio- and chemotherapy. Furthermore, we found that GBM patients in the group with the highest NSE expression lived significantly shorter than patients in the low-expression group.ConclusionsNeuronal markers are aberrantly expressed in human GBMs, and NSE is consistently upregulated in different cellular stress conditions. Knockdown of NSE reduces the migration of GBM cells and sensitizes them to hypoxia, radiotherapy and chemotherapy. In addition, GBM patients with high NSE expression had significantly shorter survival than patients with low NSE expression. Collectively, these data suggest a role for NSE in the adaption to cellular stress, such as during treatment.


Pharmacological Research | 2017

Drug repurposing in cancer

Linda Sleire; Hilde Elise Førde; Inger Anne Netland; Lina Leiss; Bente Sandvei Skeie; Per Øyvind Enger

Cancer is a major health issue worldwide, and the global burden of cancer is expected to increase in the coming years. Whereas the limited success with current therapies has driven huge investments into drug development, the average number of FDA approvals per year has declined since the 1990s. This unmet need for more effective anti-cancer drugs has sparked a growing interest for drug repurposing, i.e. using drugs already approved for other indications to treat cancer. As such, data both from pre-clinical experiments, clinical trials and observational studies have demonstrated anti-tumor efficacy for compounds within a wide range of drug classes other than cancer. Whereas some of them induce cancer cell death or suppress various aspects of cancer cell behavior in established tumors, others may prevent cancer development. Here, we provide an overview of promising candidates for drug repurposing in cancer, as well as studies describing the biological mechanisms underlying their anti-neoplastic effects.


BMC Cancer | 2012

Gene expression in tumor cells and stroma in dsRed 4T1 tumors in eGFP-expressing mice with and without enhanced oxygenation

Ingrid Moen; Charlotte Jevne; Jian Wang; Karl-Henning Kalland; Martha Chekenya; Lars A. Akslen; Linda Sleire; Per Øyvind Enger; Rolf K. Reed; Anne Margrete Øyan; L. E. B. Stuhr

BackgroundThe tumor microenvironment is pivotal in tumor progression. Thus, we aimed to develop a mammary tumor model to elucidate molecular characteristics in the stroma versus the tumor cell compartment by global gene expression. Secondly, since tumor hypoxia influences several aspects of tumor pathophysiology, we hypothesized that hyperoxia might have an inhibitory effect on tumor growth per se. Finally, we aimed to identify differences in gene expression and key molecular mechanisms, both in the native state and following treatment.Methods4T1 dsRed breast cancer cells were injected into eGFP expressing NOD/SCID mice. Group 1 was exposed to 3 intermittent HBO treatments (Day 1, 4 and 7), Group 2 to 7 daily HBO treatments (both 2.5bar, 100% O2, à 90 min), whereas the controls were exposed to a normal atmosphere. Tumor growth, histology, vascularisation, cell proliferation, cell death and metastasis were assessed. Fluorescence-activated cell sorting was used to separate tumor cells from stromal cells prior to gene expression analysis.ResultsThe purity of sorted cells was verified by fluorescence microscopy. Gene expression profiling demonstrated that highly expressed genes in the untreated tumor stroma included constituents of the extracellular matrix and matrix metalloproteinases. Tumor growth was significantly inhibited by HBO, and the MAPK pathway was found to be significantly reduced. Immunohistochemistry indicated a significantly reduced microvessel density after intermittent HBO, whereas daily HBO did not show a similar effect. The anti-angiogenic response was reflected in the expression trends of angiogenic factors.ConclusionsThe present in vivo mammary tumor model enabled us to separate tumor and stromal cells, and demonstrated that the two compartments are characterized by distinct gene expressions, both in the native state and following HBO treatments. Furthermore, hyperoxia induced a significant tumor growth-inhibitory effect, with significant down-regulation of the MAPK pathway. An anti-angiogenic effect after intermittent HBO was observed, and reflected in the gene expression profile.


BMC Cancer | 2016

Dactolisib (NVP-BEZ235) toxicity in murine brain tumour models

Inger Anne Netland; Hilde Elise Førde; Linda Sleire; Lina Leiss; Mohummad Aminur Rahman; Bente Sandvei Skeie; C. H. Gjerde; Per Øyvind Enger; Dorota Goplen

BackgroundGlioblastomas (GBMs) are highly malignant brain tumours with a poor prognosis, and current cytotoxic regimens provide only a limited survival benefit. The PI3K/Akt/mTOR pathway has been an attractive target for therapy due to its high activation in GBMs as well as other cancers. The dual pan-PI3K/mTOR kinase inhibitor dactolisib (NVP-BEZ235) is an anti-neoplastic compound currently under investigation. However, little is known about its efficacy in human GBMs. We aimed at evaluating the efficacy of dactolisib in human glioblastoma cells, as well as in murine models carrying human GBM xenografts.MethodsTo assess the effect of dactolisib in vitro, MTS assay, manual cell count, BrdU incorporation and Annexin V staining experiments were used to observe growth and apoptosis. Furthermore, Akt phosphorylation (S473), a downstream target of PI3K, was explored by western blotting. Animal studies utilizing orthotopic xenograft models of glioblastoma were performed in nude rats and NOD/SCID mice to monitor survival benefit or inhibition of tumor growth.ResultsWe found that dactolisib in vitro shows excellent dose dependent anti-growth properties and increase in apoptosis. Moreover, dose dependent inhibition of Akt phosphorylation (S473), a downstream effect of PI3K, was observed by western blotting. However, in two independent animal studies utilizing nude rats and NOD/SCID mice in orthotopic xenograft models of glioblastoma, we observed no survival benefit or inhibition of tumour growth. Severe side effects were observed, such as elevated levels of blood glucose and the liver enzyme alanine transaminase (ALT), in addition to diarrhoea, hair loss (alopecia), skin rash and accumulation of saliva in the oral cavity.ConclusionTaken together, our results suggest that despite the anti-neoplastic efficacy of dactolisib in glioma treatment in vitro, its utility in vivo is questionable due to toxicity.


Journal of Neuro-oncology | 2016

Treatment with the PI3K inhibitor buparlisib (NVP-BKM120) suppresses the growth of established patient-derived GBM xenografts and prolongs survival in nude rats.

Inger Anne Netland; Hilde Elise Førde; Linda Sleire; Lina Leiss; Mohummad Aminur Rahman; Bente Sandvei Skeie; Hrvoje Miletic; Per Øyvind Enger; Dorota Goplen

Glioblastomas (GBMs) are aggressive brain tumours with a dismal prognosis, despite combined surgery, radio- and chemotherapy. Close to 90 % of all GBMs harbour a deregulated PI3K pathway, which is essential in regulating central cellular functions such as proliferation, cell growth, motility and survival. Thus, PI3K represents a potential target for molecular therapy in GBM. We investigated the anti-tumour efficacy of the PI3K inhibitor buparlisib (NVP-BKM120) in GBM cell lines in vitro and in vivo, when treatment was initiated after MRI-confirmed tumour engraftment. We found that buparlisib inhibited glioma cell proliferation in a dose dependent manner, demonstrated by MTS assay, manual cell count and BrdU incorporation. A dose dependent increase in apoptosis was observed through flow cytometric analysis. Furthermore, by immunocytochemistry and western blot, we found a dose dependent inhibition of Akt phosphorylation. Moreover, buparlisib prolonged survival of nude rats harboring human GBM xenografts in three independent studies and reduced the tumours’ volumetric increase, as determined by MRI. In addition, histological analyses of xenograft rat brains showed necrotic areas and change in tumour cell nuclei in buparlisib-treated animals. The rats receiving buparlisib maintained their weight, activity level and food- and water intake. In conclusion, buparlisib effectively inhibits glioma cell proliferation in vitro and growth of human GBM xenografts in nude rats. Moreover, the compound is well tolerated when administered at doses providing anti-tumour efficacy. Thus, buparlisib may have a future role in glioma therapy, and further studies are warranted to validate this compound for human use.


BioMed Research International | 2013

Gamma knife surgery as monotherapy with clinically relevant doses prolongs survival in a Human GBM Xenograft Model

Bente Sandvei Skeie; Jian Wang; Ernest Dodoo; Jan Ingemann Heggdal; Janne Grønli; Linda Sleire; Sidsel Bragstad; Jeremy C. Ganz; Martha Chekenya; Sverre Mørk; Paal-Henning Pedersen; Per Øyvind Enger

Object. Gamma knife surgery (GKS) may be used for recurring glioblastomas (GBMs). However, patients have then usually undergone multimodal treatment, which makes it difficult to specifically validate GKS independent of established treatments. Thus, we developed an experimental brain tumor model to assess the efficacy and radiotoxicity associated with GKS. Methods. GBM xenografts were implanted intracerebrally in nude rats, and engraftment was confirmed with MRI. The rats were allocated to GKS, with margin doses of 12 Gy or 18 Gy, or to no treatment. Survival time was recorded, tumor sections were examined, and radiotoxicity was evaluated in a behavioral open field test. Results. In the first series, survival from the time of implantation was 96 days in treated rats and 72 days in controls (P < 0.001). In a second experiment, survival was 72 days in the treatment group versus 54 days in controls (P < 0.006). Polynuclear macrophages and fibrosis was seen in groups subjected to GKS. Untreated rats with GBM xenografts displayed less mobility than GKS-treated animals in the open field test 4 weeks after treatment (P = 0.04). Conclusion. GKS administered with clinically relevant doses prolongs survival in rats harboring GBM xenografts, and the associated toxicity is mild.


Cancer Investigation | 2013

Establishment of a Novel dsRed NOD/Scid Mouse Strain to Investigate the Host and Tumor Cell Compartments

Hege Karine Jacobsen; Linda Sleire; Jian Wang; Inger Anne Netland; Ercan Mutlu; Hilde Elise Førde; Paal-Henning Pedersen; Donald Gullberg; Per Øyvind Enger

Here we describe a NOD/Scid mouse strain expressing the dsRed transgene. The strain is maintained by inbreeding of homozygous dsRed NOD/Scid siblings, and expresses red fluorescence from various organs. The model allows engraftment of human tumor tissue, and engrafted tumors were separated into stromal and malignant cell compartments. Furthermore, we compared tumor-associated and normal fibroblast for expression of fibroblast-associated markers, and identified a marker panel that was upregulated in the tumor-associated fibroblasts. In conclusion, we propose that this model may be used in a variety of studies of tumor progression and to elucidate the role of the tumor microenvironment.


BMC Cancer | 2017

Tumour-associated glial host cells display a stem-like phenotype with a distinct gene expression profile and promote growth of GBM xenografts

Lina Leiss; Ercan Mutlu; Anne Margrete Øyan; Tao Yan; Oleg Tsinkalovsky; Linda Sleire; Kjell Petersen; Mohummad Aminur Rahman; Mireille Kayitesi Johannessen; Siddharta S. Mitra; Hege Karine Jacobsen; Krishna M. Talasila; Hrvoje Miletic; Inge Jonassen; Xingang Li; Nicolas H.C. Brons; Karl-Henning Kalland; Jian Wang; Per Øyvind Enger

BackgroundLittle is known about the role of glial host cells in brain tumours. However, supporting stromal cells have been shown to foster tumour growth in other cancers.MethodsWe isolated stromal cells from patient-derived glioblastoma (GBM) xenografts established in GFP-NOD/scid mice. With simultaneous removal of CD11b+ immune and CD31+ endothelial cells by fluorescence activated cell sorting (FACS), we obtained a population of tumour-associated glial cells, TAGs, expressing markers of terminally differentiaed glial cell types or glial progenitors. This cell population was subsequently characterised using gene expression analyses and immunocytochemistry. Furthermore, sphere formation was assessed in vitro and their glioma growth-promoting ability was examined in vivo. Finally, the expression of TAG related markers was validated in human GBMs.ResultsTAGs were highly enriched for the expression of glial cell proteins including GFAP and myelin basic protein (MBP), and immature markers such as Nestin and O4. A fraction of TAGs displayed sphere formation in stem cell medium. Moreover, TAGs promoted brain tumour growth in vivo when co-implanted with glioma cells, compared to implanting only glioma cells, or glioma cells and unconditioned glial cells from mice without tumours. Genome-wide microarray analysis of TAGs showed an expression profile distinct from glial cells from healthy mice brains. Notably, TAGs upregulated genes associated with immature cell types and self-renewal, including Pou3f2 and Sox2. In addition, TAGs from highly angiogenic tumours showed upregulation of angiogenic factors, including Vegf and Angiopoietin 2. Immunohistochemistry of three GBMs, two patient biopsies and one GBM xenograft, confirmed that the expression of these genes was mainly confined to TAGs in the tumour bed. Furthermore, their expression profiles displayed a significant overlap with gene clusters defining prognostic subclasses of human GBMs.ConclusionsOur data demonstrate that glial host cells in brain tumours are functionally distinct from glial cells of healthy mice brains. Furthermore, TAGs display a gene expression profile with enrichment for genes related to stem cells, immature cell types and developmental processes. Future studies are needed to delineate the biological mechanisms regulating the brain tumour-host interplay.

Collaboration


Dive into the Linda Sleire's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bente Sandvei Skeie

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paal-Henning Pedersen

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorota Goplen

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge