Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Sommese is active.

Publication


Featured researches published by Linda Sommese.


Journal of the American College of Cardiology | 2013

Effects of Nitric Oxide on Cell Proliferation: Novel Insights

Claudio Napoli; Giuseppe Paolisso; Amelia Casamassimi; Mohammed Al-Omran; Michelangela Barbieri; Linda Sommese; Teresa Infante; Louis J. Ignarro

Nitric oxide (NO) has been suggested to be a pathophysiological modulator of cell proliferation, cell cycle arrest, and apoptosis. In this context, NO can exert opposite effects under diverse conditions. Indeed, several studies have indicated that low relative concentrations of NO seem to favor cell proliferation and antiapoptotic responses and higher levels of NO favor pathways inducing cell cycle arrest, mitochondria respiration, senescence, or apoptosis. Here we report the effects of NO on both promotion and inhibition of cell proliferation, in particular in regard to cardiovascular disease, diabetes, and stem cells. Moreover, we focus on molecular mechanisms of action involved in the control of cell cycle progression, which include both cyclic guanosine monophosphate-dependent and -independent pathways. This growing field may lead to broad and novel targeted therapies against cardiovascular diseases, especially concomitant type 2 diabetes, as well as novel bioimaging NO-based diagnostic tools.


Proceedings of the National Academy of Sciences of the United States of America | 2010

CXCR4/YY1 inhibition impairs VEGF network and angiogenesis during malignancy

Filomena de Nigris; Valeria Crudele; Alfonso Giovane; Amelia Casamassimi; Antonio Giordano; Hermes Garban; Francesco Cacciatore; Francesca Pentimalli; Diana C. Márquez-Garbán; Antonella Petrillo; Letizia Cito; Linda Sommese; Andrea Fiore; Mario Petrillo; Alfredo Siani; Antonio Barbieri; Claudio Arra; Franco Rengo; Toshio Hayashi; Mohammed Al-Omran; Louis J. Ignarro; Claudio Napoli

Tumor growth requires neoangiogenesis. VEGF is the most potent proangiogenic factor. Dysregulation of hypoxia-inducible factor (HIF) or cytokine stimuli such as those involving the chemokine receptor 4/stromal-derived cell factor 1 (CXCR4/SDF-1) axis are the major cause of ectopic overexpression of VEGF in tumors. Although the CXCR4/SDF-1 pathway is well characterized, the transcription factors executing the effector function of this signaling are poorly understood. The multifunctional Yin Yang 1 (YY1) protein is highly expressed in different types of cancers and may regulate some cancer-related genes. The network involving CXCR4/YY1 and neoangiogenesis could play a major role in cancer progression. In this study we have shown that YY1 forms an active complex with HIF-1α at VEGF gene promoters and increases VEGF transcription and expression observed by RT-PCR, ELISA, and Western blot using two different antibodies against VEGFB. Long-term treatment with T22 peptide (a CXCR4/SDF-1 inhibitor) and YY1 silencing can reduce in vivo systemic neoangiogenesis (P < 0.01 and P < 0.05 vs. control, respectively) during metastasis. Moreover, using an in vitro angiogenesis assay, we observed that YY1 silencing led to a 60% reduction in branches (P < 0.01) and tube length (P < 0.02) and a 75% reduction in tube area (P < 0.001) compared with control cells. A similar reduction was observed using T22 peptide. We demonstrated that T22 peptide determines YY1 cytoplasmic accumulation by reducing its phosphorylation via down-regulation of AKT, identifying a crosstalk mechanism involving CXCR4/YY1. Thus, YY1 may represent a crucial molecular target for antiangiogenic therapy during cancer progression.


Transfusion Medicine Reviews | 2015

Platelet Derivatives in Regenerative Medicine: An Update

Maria Rosaria De Pascale; Linda Sommese; Amelia Casamassimi; Claudio Napoli

Prior preclinical and clinical studies support the use of platelet-derived products for the treatment of soft and hard tissue lesions. These regenerative effects are controlled by autocrine and paracrine biomolecules including growth factors and cytokines contained in platelet alpha granules. Each growth factor is involved in a phase of the healing process, such as inflammation, collagen synthesis, tissue granulation, and angiogenesis collectively promoting tissue restitution. Platelet derivatives have been prepared as platelet-rich plasma, platelet gel, platelet-rich fibrin, and platelet eye drops. These products vary in their structure, growth factors, composition, and cytokine concentrations. Here, we review the current use of platelet-derived biological products focusing on the rationale for their use and the main requirements for their preparation. Variation in the apparent therapeutic efficacy may have resulted from a lack of reproducible, standardized protocols for preparation. Despite several individual studies showing favorable treatment effects, some randomized controlled trials as well as meta-analyses have found no constant clinical benefit from the application of platelet-derived products for prevention of tissue lesions. Recently, 3 published studies in dentistry showed an improvement in bone density. Seven published studies showed positive results in joint regeneration. Five published studies demonstrated an improvement in the wound healing, and an improvement of eye epithelial healing was observed in 2 reports. Currently, at least 14 ongoing clinical trials in phase 3 or 4 have been designed with large groups of treated patients (n > 100). Because the rationale of the therapy with platelet-derived compounds is still debated, a definitive insight can be acquired only when these large randomized trials will be completed.


PLOS ONE | 2011

Massive-Scale RNA-Seq Analysis of Non Ribosomal Transcriptome in Human Trisomy 21

Valerio Costa; Claudia Angelini; Luciana D'Apice; Margherita Mutarelli; Amelia Casamassimi; Linda Sommese; Maria Assunta Gallo; Marianna Aprile; Luigi Leone; Aldo Donizetti; Stefania Crispi; Monica Rienzo; Berardo Sarubbi; Raffaele Calabrò; Marco Picardi; Paola Salvatore; Teresa Infante; Piergiuseppe De Berardinis; Claudio Napoli; Alfredo Ciccodicola

Hybridization- and tag-based technologies have been successfully used in Down syndrome to identify genes involved in various aspects of the pathogenesis. However, these technologies suffer from several limits and drawbacks and, to date, information about rare, even though relevant, RNA species such as long and small non-coding RNAs, is completely missing. Indeed, none of published works has still described the whole transcriptional landscape of Down syndrome. Although the recent advances in high-throughput RNA sequencing have revealed the complexity of transcriptomes, most of them rely on polyA enrichment protocols, able to detect only a small fraction of total RNA content. On the opposite end, massive-scale RNA sequencing on rRNA-depleted samples allows the survey of the complete set of coding and non-coding RNA species, now emerging as novel contributors to pathogenic mechanisms. Hence, in this work we analysed for the first time the complete transcriptome of human trisomic endothelial progenitor cells to an unprecedented level of resolution and sensitivity by RNA-sequencing. Our analysis allowed us to detect differential expression of even low expressed genes crucial for the pathogenesis, to disclose novel regions of active transcription outside yet annotated loci, and to investigate a plethora of non-polyadenilated long as well as short non coding RNAs. Novel splice isoforms for a large subset of crucial genes, and novel extended untranslated regions for known genes—possibly novel miRNA targets or regulatory sites for gene transcription—were also identified in this study. Coupling the rRNA depletion of samples, followed by high-throughput RNA-sequencing, to the easy availability of these cells renders this approach very feasible for transcriptome studies, offering the possibility of investigating in-depth blood-related pathological features of Down syndrome, as well as other genetic disorders.


Biochimica et Biophysica Acta | 2014

Involvement of Mediator complex in malignancy

Concetta Schiano; Amelia Casamassimi; Monica Rienzo; Filomena de Nigris; Linda Sommese; Claudio Napoli

Mediator complex (MED) is an evolutionarily conserved multiprotein, fundamental for growth and survival of all cells. In eukaryotes, the mRNA transcription is dependent on RNA polymerase II that is associated to various molecules like general transcription factors, MED subunits and chromatin regulators. To date, transcriptional machinery dysfunction has been shown to elicit broad effects on cell proliferation, development, differentiation, and pathologic disease induction, including cancer. Indeed, in malignant cells, the improper activation of specific genes is usually ascribed to aberrant transcription machinery. Here, we focus our attention on the correlation of MED subunits with carcinogenesis. To date, many subunits are mutated or display altered expression in human cancers. Particularly, the role of MED1, MED28, MED12, CDK8 and Cyclin C in cancer is well documented, although several studies have recently reported a possible association of other subunits with malignancy. Definitely, a major comprehension of the involvement of the whole complex in cancer may lead to the identification of MED subunits as novel diagnostic/prognostic tumour markers to be used in combination with imaging technique in clinical oncology, and to develop novel anti-cancer targets for molecular-targeted therapy.


American Heart Journal | 2008

Long-term treatment with sulfhydryl angiotensin-converting enzyme inhibition reduces carotid intima-media thickening and improves the nitric oxide/oxidative stress pathways in newly diagnosed patients with mild to moderate primary hypertension

Claudio Napoli; Giuseppe Bruzzese; Louis J. Ignarro; Ettore Crimi; Filomena de Nigris; Sharon Williams-Ignarro; Sabina Libardi; Linda Sommese; Carmela Fiorito; Francesco Paolo Mancini; Francesco Cacciatore; Antonio Liguori

BACKGROUND Sulfhydryl angiotensin-converting enzyme (ACE) inhibitors exert antiatherosclerotic effects in preclinical models and antioxidant effects in patients. However, whether ACE inhibitors have any clinically significant antiatherogenic effects remains still debated. OBJECTIVES In mildly hypertensive patients, we evaluated the effect of the sulfhydryl ACE inhibitor zofenopril in comparison with the carboxylic ACE inhibitor enalapril on carotid atherosclerosis (intima-media thickness [IMT] and vascular lumen diameter) and systemic oxidative stress (nitrite/nitrate, asymmetrical dimethyl-l-arginine, and isoprostanes). METHODS In 2001, we started a small prospective randomized clinical trial on 48 newly diagnosed mildly hypertensive patients with no additional risk factors for atherosclerosis (eg, hyperlipidemia, smoke habit, familiar history of atherosclerosis-related diseases or diabetes). Patients were randomly assigned either to the enalapril (20 mg/d, n = 24) or the zofenopril group (30 mg/d, n = 24); the planned duration of the trial was 5 years. Carotid IMT and vascular lumen diameter were determined by ultrasonography for all patients at baseline and at 1, 3, and 5 years. Furthermore, nitrite/nitrate, asymmetrical dimethyl-l-arginine, and isoprostane levels were measured. RESULTS In our conditions, IMT of the right and left common carotid arteries was similar at baseline in both groups (P = NS). Intima-media thickness measurements until 5 years revealed a significant reduction in the zofenopril group but not in the enalapril group (P < .05 vs enalapril-treated group). This effect was coupled with a favorable nitric oxide/oxidative stress profile in the zofenopril group. CONCLUSIONS Long-term treatment with the sulfhydryl ACE inhibitor zofenopril besides its blood pressure-lowering effects may slow the progression of IMT of the carotid artery in newly diagnosed mildly hypertensive patients.


European Journal of Haematology | 2008

Functional impairment of hematopoietic progenitor cells in patients with coronary heart disease

Antonio Liguori; Carmela Fiorito; Maria Luisa Balestrieri; Ettore Crimi; Giuseppe Bruzzese; Sharon Williams-Ignarro; Maurizio D’Amora; Linda Sommese; Vincenzo Grimaldi; Pellegrino Biagio Minucci; Alfonso Giovane; Bartolomeo Farzati; Louis J. Ignarro; Claudio Napoli

The circulating form of endothelial progenitors cells (EPCs) are derivated from bone marrow (BM)‐derived hematopoietic stem cells (HSCs). Enhanced mobilization of EPCs was shown to be linked to cardiac diseases. This study investigated whether reduced EPC levels in advanced coronary heart disease (CHD) are secondary to a functional exhaustion of HSCs in the BM or to reduced mobilization. Number and functional properties of EPCs were assessed in 15 healthy controls, and 40 patients with CHD. The colony‐forming unit (CFU) capacity of BM‐derived mononuclear cells and the CD34+ HSC number were examined in four healthy volunteers, and 15 CHD patients. EPC number was reduced in CHD patients (P < 0.01 vs. controls). Moreover, the migratory capacity was significantly impaired in EPCs of CHD patients (P < 0.05 vs. controls). On multivariate analysis, CHD was an independent predictor of functional EPC impairment. CFUs were reduced in CHD patients (59.6 ± 21.2 vs. 75.4 ± 25.8 in controls, P < 0.05). CHD was also predictor of impaired CFU capacity. In this small clinical study, CHD is associated with selective impairment of HSC function in the BM and in the peripheral blood, which may contribute to impairment of cardiac function.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Detrimental effects of Bartonella henselae are counteracted by L-arginine and nitric oxide in human endothelial progenitor cells.

Paola Salvatore; Amelia Casamassimi; Linda Sommese; Carmela Fiorito; Alfredo Ciccodicola; Raffaele Rossiello; Bice Avallone; Vincenzo Grimaldi; Valerio Costa; Monica Rienzo; Roberta Colicchio; Sharon Williams-Ignarro; Caterina Pagliarulo; Maria Evelina Prudente; Ciro Abbondanza; Florentia Lamberti; Adone Baroni; Elisabetta Buommino; Bartolomeo Farzati; Maria Antonietta Tufano; Louis J. Ignarro; Claudio Napoli

The recruitment of circulating endothelial progenitor cells (EPCs) might have a beneficial effect on the clinical course of several diseases. Endothelial damage and detachment of endothelial cells are known to occur in infection, tissue ischemia, and sepsis. These detrimental effects in EPCs are unknown. Here we elucidated whether human EPCs internalize Bartonella henselae constituting a circulating niche of the pathogen. B. henselae invades EPCs as shown by gentamicin protection assays and transmission electron microscopy (TEM). Dil-Ac-LDL/lectin double immunostaining and fluorescence-activated cell sorting (FACS) analysis of EPCs revealed EPC bioactivity after infection with B. henselae. Nitric oxide (NO) and its precursor l-arginine (l-arg) exert a plethora of beneficial effects on vascular function and modulation of immune response. Therefore, we tested also the hypothesis that l-arg (1–30 mM) would affect the infection of B. henselae or tumor necrosis factor (TNF) in EPCs. Our data provide evidence that l-arg counteracts detrimental effects induced by TNF or Bartonella infections via NO (confirmed by DETA-NO and L-NMMA experiments) and by modulation of p38 kinase phosphorylation. Microarray analysis indicated several genes involved in immune response were differentially expressed in Bartonella-infected EPCs, whereas these genes returned in steady state when cells were exposed to sustained doses of l-arg. This mechanism may have broad therapeutic applications in tissue ischemia, angiogenesis, immune response, and sepsis.


World Journal of Cardiology | 2016

Novel epigenetic-based therapies useful in cardiovascular medicine.

Claudio Napoli; Vincenzo Grimaldi; Maria Rosaria De Pascale; Linda Sommese; Teresa Infante; Andrea Soricelli

Epigenetic modifications include DNA methylation, histone modifications, and microRNA. Gene alterations have been found to be associated with cardiovascular diseases, and epigenetic mechanisms are continuously being studied to find new useful strategies for the clinical management of afflicted patients. Numerous cardiovascular disorders are characterized by the abnormal methylation of CpG islands and so specific drugs that could inhibit DNA methyltransferase directly or by reducing its gene expression (e.g., hydralazine and procainamide) are currently under investigation. The anti-proliferative and anti-inflammatory properties of histone deacetylase inhibitors and their cardio-protective effects have been confirmed in preclinical studies. Furthermore, the regulation of the expression of microRNA targets through pharmacological tools is still under development. Indeed, large controlled trials are required to establish whether current possible candidate antisense microRNAs could offer better therapeutic benefits in clinical practice. Here, we updated therapeutic properties, side effects, and feasibility of emerging epigenetic-based strategies in cardiovascular diseases by highlighting specific problematic issues that still affect the development of large scale novel therapeutic protocols.


Stem Cell Reviews and Reports | 2017

Possible Muscle Repair in the Human Cardiovascular System

Linda Sommese; Alberto Zullo; Concetta Schiano; Francesco Paolo Mancini; Claudio Napoli

The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.

Collaboration


Dive into the Linda Sommese's collaboration.

Top Co-Authors

Avatar

Claudio Napoli

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Amelia Casamassimi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Concetta Schiano

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Grimaldi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Chiara Sabia

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Antonietta Picascia

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Carmela Fiorito

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesco Cacciatore

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maria Rosaria De Pascale

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge