Linda Tømmerdal Roten
Norwegian University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Linda Tømmerdal Roten.
PLOS ONE | 2012
Matthew P. Johnson; Shaun P. Brennecke; Christine East; Harald H H Göring; Jack W. Kent; Thomas D. Dyer; Joanne Said; Linda Tømmerdal Roten; Ann-Charlotte Iversen; Lawrence J. Abraham; Seppo Heinonen; Eero Kajantie; Juha Kere; Katja Kivinen; Anneli Pouta; Hannele Laivuori; Rigmor Austgulen; John Blangero; Eric K. Moses
Elucidating the genetic architecture of preeclampsia is a major goal in obstetric medicine. We have performed a genome-wide association study (GWAS) for preeclampsia in unrelated Australian individuals of Caucasian ancestry using the Illumina OmniExpress-12 BeadChip to successfully genotype 648,175 SNPs in 538 preeclampsia cases and 540 normal pregnancy controls. Two SNP associations (rs7579169, p = 3.58×10−7, OR = 1.57; rs12711941, p = 4.26×10−7, OR = 1.56) satisfied our genome-wide significance threshold (modified Bonferroni p<5.11×10−7). These SNPs reside in an intergenic region less than 15 kb downstream from the 3′ terminus of the Inhibin, beta B (INHBB) gene on 2q14.2. They are in linkage disequilibrium (LD) with each other (r2 = 0.92), but not (r2<0.80) with any other genotyped SNP ±250 kb. DNA re-sequencing in and around the INHBB structural gene identified an additional 25 variants. Of the 21 variants that we successfully genotyped back in the case-control cohort the most significant association observed was for a third intergenic SNP (rs7576192, p = 1.48×10−7, OR = 1.59) in strong LD with the two significant GWAS SNPs (r2>0.92). We attempted to provide evidence of a putative regulatory role for these SNPs using bioinformatic analyses and found that they all reside within regions of low sequence conservation and/or low complexity, suggesting functional importance is low. We also explored the mRNA expression in decidua of genes ±500 kb of INHBB and found a nominally significant correlation between a transcript encoded by the EPB41L5 gene, ∼250 kb centromeric to INHBB, and preeclampsia (p = 0.03). We were unable to replicate the associations shown by the significant GWAS SNPs in case-control cohorts from Norway and Finland, leading us to conclude that it is more likely that these SNPs are in LD with as yet unidentified causal variant(s).
European Journal of Human Genetics | 2009
Linda Tømmerdal Roten; Matthew P. Johnson; Siri Forsmo; Elizabeth Fitzpatrick; Thomas D. Dyer; Shaun P. Brennecke; John Blangero; Eric K. Moses; Rigmor Austgulen
Genome-wide scans in Icelandic, Australian/New Zealand and Finnish pedigrees have provided evidence for maternal susceptibility loci for pre-eclampsia on chromosome 2, although at different positions (Iceland: 2p13 and 2q23, Australia/New Zealand: 2p11–12 and 2q22, Finland: 2p25). In this project, a large population-based (n=65 000) nested case–control study was performed in Norway to further explore the association between positional candidate genes on chromosome 2q and pre-eclampsia, using single-nucleotide polymorphisms (SNPs). DNA samples from 1139 cases (women with one or more pre-eclamptic pregnancies) and 2269 controls (women with normal pregnancies) were genotyped using the Applied Biosystems SNPlex high-throughput genotyping assay. In total, 71 SNPs within positional candidate genes at 2q22–23 locus on chromosome 2 were genotyped in each individual. Genotype data were statistically analysed with the sequential oligogenic linkage analysis routines (SOLAR) computer package. Nominal evidence of association was found for six SNPs (rs1014064, rs17742134, rs1424941, rs2161983, rs3768687 and rs3764955) within the activin receptor type 2 gene (ACVR2A) (all P-values <0.05). The non-independence of statistical tests due to linkage disequilibrium between SNPs at a false discovery rate of 5% identifies our four best SNPs (rs1424941, rs1014064, rs2161983 and rs3768687) to remain statistically significant. The fact that populations with different ancestors (Iceland/Norway–Australia/New Zealand) demonstrate a common maternal pre-eclampsia susceptibility locus on chromosome 2q22–23, may suggest a general role of this locus, and possibly the ACVR2A gene, in pre-eclampsia pathogenesis.
Acta Obstetricia et Gynecologica Scandinavica | 2013
Liv Cecilie Vestrheim Thomsen; Kari Klungsøyr; Linda Tømmerdal Roten; Christian Tappert; Elisabeth Araya; Gunhild Bærheim; Kjersti Tollaksen; Mona H. Fenstad; Ferenc Macsali; Rigmor Austgulen; Line Bjørge
Evaluating the validity of pre‐eclampsia registration in the Medical Birth Registry of Norway (MBRN) according to both broader and restricted disease definitions.
Molecular Human Reproduction | 2011
Linda Tømmerdal Roten; Mona H. Fenstad; Siri Forsmo; Matthew P. Johnson; Eric K. Moses; Rigmor Austgulen; F. Skorpen
The etiology of preeclampsia is complex, with susceptibility being attributable to multiple environmental factors and a large genetic component. Although many candidate genes for preeclampsia have been suggested and studied, the specific causative genes still remain to be identified. Catechol-O-methyltransferase (COMT) is an enzyme involved in catecholamine and estrogen degradation and has recently been ascribed a role in development of preeclampsia. In the present study, we have examined the COMT gene by genotyping the functional Val108/158Met polymorphism (rs4680) and an additional single-nucleotide polymorphism, rs6269, predicting COMT activity haplotypes in a large Norwegian case/control cohort (ncases= 1135, ncontrols= 2262). A low COMT activity haplotype is associated with recurrent preeclampsia in our cohort. This may support the role of redox-regulated signaling and oxidative stress in preeclampsia pathogenesis as suggested by recent studies in a genetic mouse model. The COMT gene might be a genetic risk factor shared between preeclampsia and cardiovascular diseases.
PLOS ONE | 2010
Mona H. Fenstad; Matthew P. Johnson; Linda Tømmerdal Roten; Per Arne Aas; Siri Forsmo; Kjetil Klepper; Christine East; Lawrence J. Abraham; John Blangero; Shaun P. Brennecke; Rigmor Austgulen; Eric K. Moses
Background Preeclampsia is a serious pregnancy complication, demonstrating a complex pattern of inheritance. The elucidation of genetic liability to preeclampsia remains a major challenge in obstetric medicine. We have adopted a positional cloning approach to identify maternal genetic components, with linkages previously demonstrated to chromosomes 2q, 5q and 13q in an Australian/New Zealand familial cohort. The current study aimed to identify potential functional and structural variants in the positional candidate gene TNFSF13B under the 13q linkage peak and assess their association status with maternal preeclampsia genetic susceptibility. Methodology/Principal Findings The proximal promoter and coding regions of the positional candidate gene TNFSF13B residing within the 13q linkage region was sequenced using 48 proband or founder individuals from Australian/New Zealand families. Ten sequence variants (nine SNPs and one single base insertion) were identified and seven SNPs were successfully genotyped in the total Australian/New Zealand family cohort (74 families/480 individuals). Borderline association to preeclampsia (p = 0.0153) was observed for three rare SNPs (rs16972194, rs16972197 and rs56124946) in strong linkage disequilibrium with each other. Functional evaluation by electrophoretic mobility shift assays showed differential nuclear factor binding to the minor allele of the rs16972194 SNP, residing upstream of the translation start site, making this a putative functional variant. The observed genetic associations were not replicated in a Norwegian case/control cohort (The Nord-Trøndelag Health Study (HUNT2), 851 preeclamptic and 1,440 non-preeclamptic women). Conclusion/Significance TNFSF13B has previously been suggested to contribute to the normal immunological adaption crucial for a successful pregnancy. Our observations support TNFSF13B as a potential novel preeclampsia susceptibility gene. We discuss a possible role for TNFSF13B in preeclampsia pathogenesis, and propose the rs16972194 variant as a candidate for further functional evaluation.
Molecular Human Reproduction | 2013
Matthew P. Johnson; Shaun P. Brennecke; Christine East; Thomas D. Dyer; Linda Tømmerdal Roten; J. Michael Proffitt; Phillip E. Melton; Mona H. Fenstad; Tia Aalto-Viljakainen; Kaarin Mäkikallio; Seppo Heinonen; Eero Kajantie; Juha Kere; Hannele Laivuori; Rigmor Austgulen; John Blangero; Eric K. Moses; Anneli Pouta; Katja Kivinen; Eeva Ekholm; Reija Hietala; Susanna Sainio; Terhi Saisto; Jukka Uotila; Miira M. Klemetti; Anna Inkeri Lokki; Leena Georgiadis; Elina Huovari; Eija Kortelainen; Satu Leminen
Pre-eclampsia is an idiopathic pregnancy disorder promoting morbidity and mortality to both mother and child. Delivery of the fetus is the only means to resolve severe symptoms. Women with pre-eclamptic pregnancies demonstrate increased risk for later life cardiovascular disease (CVD) and good evidence suggests these two syndromes share several risk factors and pathophysiological mechanisms. To elucidate the genetic architecture of pre-eclampsia we have dissected our chromosome 2q22 susceptibility locus in an extended Australian and New Zealand familial cohort. Positional candidate genes were prioritized for exon-centric sequencing using bioinformatics, SNPing, transcriptional profiling and QTL-walking. In total, we interrogated 1598 variants from 52 genes. Four independent SNP associations satisfied our gene-centric multiple testing correction criteria: a missense LCT SNP (rs2322659, P = 0.0027), a synonymous LRP1B SNP (rs35821928, P = 0.0001), an UTR-3 RND3 SNP (rs115015150, P = 0.0024) and a missense GCA SNP (rs17783344, P = 0.0020). We replicated the LCT SNP association (P = 0.02) and observed a borderline association for the GCA SNP (P = 0.07) in an independent Australian case-control population. The LRP1B and RND3 SNP associations were not replicated in this same Australian singleton cohort. Moreover, these four SNP associations could not be replicated in two additional case-control populations from Norway and Finland. These four SNPs, however, exhibit pleiotropic effects with several quantitative CVD-related traits. Our results underscore the genetic complexity of pre-eclampsia and present novel empirical evidence of possible shared genetic mechanisms underlying both pre-eclampsia and other CVD-related risk factors.
Molecular Human Reproduction | 2010
Mona H. Fenstad; Matthew P. Johnson; Mari Løset; Siv Boon Mundal; Linda Tømmerdal Roten; Irina Poliakova Eide; Line Bjørge; R. K. Sande; Åsa Johansson; Thomas D. Dyer; Siri Forsmo; John Blangero; Eric K. Moses; Rigmor Austgulen
Variation in the Storkhead box-1 (STOX1) gene has previously been associated with pre-eclampsia. In this study, we assess candidate single nucleotide polymorphisms (SNPs) in STOX1 in an independent population cohort of pre-eclamptic (n = 1.139) and non-pre-eclamptic (n = 2.269) women (the HUNT2 study). We also compare gene expression levels of STOX1 and its paralogue, Storkhead box-2 (STOX2) in decidual tissue from pregnancies complicated by pre-eclampsia and/or fetal growth restriction (FGR) (n = 40) to expression levels in decidual tissue from uncomplicated pregnancies (n = 59). We cannot confirm association of the candidate SNPs to pre-eclampsia (P > 0.05). For STOX1, no differential gene expression was observed in any of the case groups, whereas STOX2 showed significantly lower expression in deciduas from pregnancies complicated by both pre-eclampsia and FGR as compared with controls (P = 0.01). We further report a strong correlation between transcriptional alterations reported previously in choriocarcinoma cells over expressing STOX1A and alterations observed in decidual tissue of pre-eclamptic women with FGR.
Molecular Human Reproduction | 2010
Mona H. Fenstad; Matthew P. Johnson; Mari Løset; Siv Boon Mundal; Linda Tømmerdal Roten; Irina Poliakova Eide; Line Bjørge; R. K. Sande; Å. K. Johansson; Thomas D. Dyer; Siri Forsmo; John Blangero; Eric K. Moses; Rigmor Austgulen
Variation in the Storkhead box-1 (STOX1) gene has previously been associated with pre-eclampsia. In this study, we assess candidate single nucleotide polymorphisms (SNPs) in STOX1 in an independent population cohort of pre-eclamptic (n = 1.139) and non-pre-eclamptic (n = 2.269) women (the HUNT2 study). We also compare gene expression levels of STOX1 and its paralogue, Storkhead box-2 (STOX2) in decidual tissue from pregnancies complicated by pre-eclampsia and/or fetal growth restriction (FGR) (n = 40) to expression levels in decidual tissue from uncomplicated pregnancies (n = 59). We cannot confirm association of the candidate SNPs to pre-eclampsia (P > 0.05). For STOX1, no differential gene expression was observed in any of the case groups, whereas STOX2 showed significantly lower expression in deciduas from pregnancies complicated by both pre-eclampsia and FGR as compared with controls (P = 0.01). We further report a strong correlation between transcriptional alterations reported previously in choriocarcinoma cells over expressing STOX1A and alterations observed in decidual tissue of pre-eclamptic women with FGR.
Journal of Hypertension | 2015
Liv Cecilie Vestrheim Thomsen; Philip E. Melton; Kjersti Tollaksen; Ingvill Lyslo; Linda Tømmerdal Roten; Maria Lisa Odland; Kristin Melheim Strand; Ottar Nygård; Chen Sun; Ann-Charlotte Iversen; Rigmor Austgulen; Eric K. Moses; Line Bjørge
Objective: Preeclampsia is a complex genetic disease of pregnancy with a heterogenous presentation, unknown cause and potential severe outcomes for both mother and child. Preeclamptic women have increased risk for atherothrombotic cardiovascular disease. We aimed to identify heritabilities and phenotypic correlations of preeclampsia and related conditions in the Norwegian Preeclampsia Family Biobank. Methods: By applying a variance components model, a total of 493 individuals (from 138 families with increased occurrence of preeclampsia) were classified according to 30 disease-related phenotypes. Results: Of parous women, 75.7% (263/338) had experienced preeclampsia and 35.7% of women with and 22.4% without preeclampsia delivered children small for gestational age (SGA). We identified 11 phenotypes as heritable. The increased occurrence of preeclampsia was reflected by the presence [heritability (H2r) = 0.60)] and severity (H2r = 0.15) of preeclampsia and being born in a preeclamptic pregnancy (H2r = 0.25). Other heritable phenotypes identified included SGA (H2r = 0.40), chronic hypertension (H2r = 0.57), severity of atherothrombotic cardiovascular disease (H2r = 0.31), BMI (H2r = 0.60) and pulmonary disease (H2r = 0.91). The heritable phenotype preeclampsia overlapped with SGA (P = 0.03), whereas pulmonary disease was phenotypically correlated with atherothrombotic cardiovascular disease (P < 0.01), SGA (P = 0.02) and BMI (P = 0.02). Conclusion: This is the first study identifying the H2r of a range of health-related conditions in preeclamptic families. Our study demonstrates how refinement of phenotypes leads to better H2r estimation and the identification of a biological relationship between preeclampsia and related traits.
Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health | 2014
Mari Løset; Matthew P. Johnson; Philip E. Melton; Wei Ang; Rae-Chi Huang; Trevor A. Mori; Lawrence J. Beilin; Craig E. Pennell; Linda Tømmerdal Roten; Ann-Charlotte Iversen; Rigmor Austgulen; Christine East; John Blangero; Shaun P. Brennecke; Eric K. Moses
OBJECTIVE Four putative single nucleotide polymorphism (SNP) risk variants at the preeclampsia susceptibility locus on chromosome 2q22; rs2322659 (LCT), rs35821928 (LRP1B), rs115015150 (RND3) and rs17783344 (GCA), were recently shown to associate with known cardiovascular risk factors in a Mexican American cohort. This study aimed to further evaluate the pleiotropic effects of these preeclampsia risk variants in an independent Australian population-based cohort. METHODS The four SNPs were genotyped in the Western Australian Pregnancy Cohort (Raine) Study that included DNA, clinical and biochemical data from 1246 mothers and 1404 of their now adolescent offspring. Genotype association analyses were undertaken using the SOLAR software. RESULTS Nominal associations (P<0.05) with cardiovascular risk factors were detected for all four SNPs. The LCT SNP was associated with decreased maternal height (P=0.005) and decreased blood glucose levels in adolescents (P=0.022). The LRP1B SNP was associated with increased maternal height (P=0.026) and decreased maternal weight (P=0.044). The RND3 SNP was associated with decreased triglycerides in adolescents (P=0.001). The GCA SNP was associated with lower risk in adolescents to be born of a preeclamptic pregnancy (P=0.003) and having a mother with prior preeclamptic pregnancy (P=0.033). CONCLUSIONS Our collective findings support the hypothesis that genetic mechanisms for preeclampsia and CVD are, at least in part, shared, but need to be interpreted with some caution as a Bonferroni correction for multiple testing adjusted the statistical significance threshold (adjusted P<0.001).